Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Sci Food Agric ; 102(6): 2309-2320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34625957

RESUMO

BACKGROUND: The widespread use of palm oil in food production affects high consumption of long-chain saturated fatty acids, which increases the risk of cardiovascular disease. Solid or semi-solid wax-based oleogels obtained as a result of edible oils structuring can be an alternative. RESULTS: Oleogels, obtained by structuring a mixture of refined rapeseed and linseed oils (1:1) with 30-80 g kg-1 candelilla wax (CW), were investigated using optical techniques: multi-speckle diffusing wave spectroscopy, centrifugal stability analysis, reflection method, and polarized light microscopy. Refined palm oil was a comparative sample. Increasing CW concentration resulted in an increase in values of L* parameter and opacity, a decrease in the Yellowness Index and a slight increase in the average crystal size. The microstructure of oleogels with 30 or 40 g kg-1 CW was least like the crystal network. Solidification of oleogels took place in two stages. Increase in CW concentration shortened solidification time and increased solidification temperature (greater elasticity of oleogels). Palm oil solidified the longest (497.1 min) and at the lowest temperature (29.3 °C). It showed lower resistance to centrifugal force than oleogels at 20 and 30 °C. All oleogels were stable (no oil release occurred) at 20 °C. CONCLUSION: Optical methods allow for an objective and detailed analysis of physical properties of palm oil and oleogels, as well as identification and tracking changes at the microstructural level over time. It has great potential in the edible lipid quality control at various stages of processing or storage. © 2021 Society of Chemical Industry.


Assuntos
Óleos , Compostos Orgânicos , Ácidos Graxos/análise , Compostos Orgânicos/química , Óleo de Palmeira
2.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472842

RESUMO

Cream-type emulsions containing candelilla wax-based oleogels (EC) were analyzed for their physicochemical properties compared to palm oil-based creams (EP). The microstructure, rheological behavior, stability, and color of the creams were determined by means of non-invasive and invasive techniques. All the formulations exhibited similar color parameters in CIEL*a*b* space, unimodal-like size distribution of lipid particles, and shear-thinning properties. Oleogel-based formulations were characterized by higher viscosity (consistency index: 172-305 mPa·s, macroscopic viscosity index: 2.19-3.08 × 10-5 nm-2) and elasticity (elasticity index: 1.09-1.45 × 10-3 nm-2), as well as greater resistance to centrifugal force compared to EP. Creams with 3, 4, or 5% wax (EC3-5) showed the lowest polydispersity indexes (PDI: 0.80-0.85) 24 h after production and the lowest instability indexes after environmental temperature changes (heating at 90 °C, or freeze-thaw cycle). EC5 had particularly high microstructural stability. In turn, candelilla wax content ≥ 6% w/w accelerated the destabilization processes of the cream-type emulsions due to disintegration of the interfacial layer by larger lipid crystals. It was found that candelilla wax-based lipids had great potential for use as palm oil substitutes in the development of novel vegan cream analogues.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37177061

RESUMO

Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.

4.
Foods ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36553688

RESUMO

The aim of the study was to determine the influence of enriching liver sausages with different levels of walnut paste on the quality properties of this product. Sausages were produced with 5, 10, 15, 20, and 25% amount additions of walnut paste and without the addition of nuts (control product). It was found that walnut paste, especially when introduced at an amount >15%, was a component that limited thermal losses and significantly modified the characteristics of liver sausages. The addition of walnut paste also increased the fat content of liver sausages by two−three times, which was one of the factors that weakened their structure, including lowering their compression, shear, and penetration force but increasing their spreadability. Moreover, the addition of walnut paste at an amount of ≥20% resulted in the products having a slightly different color, with lower values for the a* color parameter. Such changes were assessed as a favorable modification to the product, increasing its overall desirability, especially with the addition of walnut paste at the level of 20%. Walnut paste can therefore be a valuable ingredient that allows for the development of a health-promoting product with improved quality features. However, with the addition of a walnut paste at an amount of 25%, it is necessary to take into account the more rapid and unfavorable fat changes that occur during the storage of the liver sausages, as indicated by about 50% higher TBARS values (compared to the control product).

5.
Nanomaterials (Basel) ; 12(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630909

RESUMO

Focused electron beam induced deposition (FEBID) is a versatile tool to produce nanostructures through electron-induced decomposition of metal-containing precursor molecules. However, the metal content of the resulting materials is often low. Using different Ag(I) complexes, this study shows that the precursor performance depends critically on the molecular structure. This includes Ag(I) 2,2-dimethylbutanoate, which yields high Ag contents in FEBID, as well as similar aliphatic Ag(I) carboxylates, aromatic Ag(I) benzoate, and the acetylide Ag(I) 3,3-dimethylbutynyl. The compounds were sublimated on inert surfaces and their electron-induced decomposition was monitored by electron-stimulated desorption (ESD) experiments in ultrahigh vacuum and by reflection-absorption infrared spectroscopy (RAIRS). The results reveal that Ag(I) carboxylates with aliphatic side chains are particularly favourable for FEBID. Following electron impact ionization, they fragment by loss of volatile CO2. The remaining alkyl radical converts to a stable and equally volatile alkene. The lower decomposition efficiency of Ag(I) benzoate and Ag(I) 3,3-dimethylbutynyl is explained by calculated average local ionization energies (ALIE) which reveal that ionization from the unsaturated carbon units competes with ionization from the coordinate bond to Ag. This can stabilise the ionized complex with respect to fragmentation. This insight provides guidance with respect to the design of novel FEBID precursors.

6.
Gels ; 8(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35877533

RESUMO

The aim of this study was to evaluate the macro- and microscopic properties of oleogels with yellow beeswax using different methods, especially modern optical techniques. Microrheological properties, physical stability and morphology of oleogel crystals obtained by structuring of peanut oil with yellow beeswax was analyzed. It was observed that oleogels, even with the smallest concentration of beeswax (2%), were resistant to centrifugal force. Increase in yellow beeswax concentration (from 2, 4, 6 to 8 %) resulted in significant differences in the characteristics of oleogels: increased elasticity (EI), macroscopic viscosity (MVI) and the firmness values of oleogels. It was concluded that non-invasive optical techniques (multi-speckle diffusing wave spectroscopy-Rheolaser Master) are useful in obtaining a quick evaluation of physical properties of oleogels at the microstructural level, and the received information allows for quality assessment.

7.
Nanomaterials (Basel) ; 12(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35957140

RESUMO

Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.

8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 9): m1225-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22064902

RESUMO

The title compound, [Cu(C(3)F(5)O(2))(C(3)H(9)OP)(4)](C(3)F(5)O(2)), comprises a cationic Cu(II) complex and a disordered penta-fluoro-propionate counter-ion. The metal atom has a distorted square-pyramidal coordination environment formed by four O atoms originating from trimethyl-phosphine oxide mol-ecules and the remaining one belonging to the monodentate penta-fluoro-propionate anion, which is situated in the basal plane of the pyramid. The mol-ecules are held together in the crystal by a net of weak C-H⋯O and C-H⋯F hydrogen bonds. The counter anion is disordered over two sets of sites in a 0.629 (5):0.371 (5) ratio.

9.
Materials (Basel) ; 14(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201158

RESUMO

In the present study, we have synthesised and characterised newly copper(II) complexes with the general formula [Cu2(NH2(NH=)CC2F5)2(µ-O2CRF)4], where RF = CF3, C2F5, C3F7, C4F9. Infrared spectroscopy, mass spectrometry with electron ionisation (EI MS), and density-functional theory (DFT) calculations were used to confirm compounds' composition and structure. The volatility of the compounds was studied using thermal analysis (TGA), EI MS mass spectrometry, variable temperature infrared spectroscopy (VT IR), and sublimation experiments. Research has revealed that these compounds are the source of metal carriers in the gas phase. The thermal decomposition mechanism over reduced pressure was proposed. TGA studies demonstrated that copper transfer to the gaseous phase occurs even at atmospheric pressure. Two selected complexes [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] and [Cu2(NH2(NH=)CC2F5)2(µ-O2CC3F7)4] were successful used as chemical vapour deposition precursors. Copper films were deposited with an evaporation temperature of 393 K and 453 K, respectively, and a decomposition temperature in the range of 573-633 K without the use of hydrogen. The microscopic observations made to investigate the interaction of the [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] with the electron beam showed that the ligands are completely lost under transmission electron microscopy analysis conditions (200 keV), and the final product is copper(II) fluoride. In contrast, the beam energy in scanning electron microscopy (20 keV) was insufficient to break all coordination bonds. It was shown that the Cu-O bond is more sensitive to the electron beam than the Cu-N bond.

10.
J Oleo Sci ; 70(10): 1495-1507, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34497181

RESUMO

The purpose of this study was to determine the impact of the fat system type (milk fat - MF, palm oil - PO or oleogel - OG, i.e. RO-LO - rapeseed oil and linseed oil mixture structured by candelilla wax) on the properties of soy creams, in comparison with dairy cream. The MF exhibited the most increase of acid value (2.5-fold), and the RO-LO - increase of peroxide value (3-fold), after 30 days of storage at 20°C. The PO was the most oxidative stable. The OG presented the slightest oxidative changes, the highest slip melting point (39°C) and centrifugal stability (99.6%). The pH and total acidity values of soy creams were similar to soy drink. All creams exhibited unimodal distribution of dispersed particles. The average particle size and dispersity indexes of these emulsions were in range of 1.74-1.80 µm and 0.93-1.16, respectively. The creams with MF or OG exhibited a greater viscosity than sweet dairy cream - 1.66 10-5 nm-2, and a higher degree of shear-thinning. The accelerated creaming phenomenon (flotation of lipids molecules) occurred during centrifugation. The cream with PO had the lowest resistance to centrifugal force (instability index - 0.052). The possibility to obtain a stable vegan soy creams containing oleogel (as replacer of conventional fats) has been demonstrated.


Assuntos
Gorduras/química , Tecnologia de Alimentos/métodos , Alimentos de Soja , Ondas Ultrassônicas , Centrifugação , Emulsões , Gorduras/análise , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Compostos Orgânicos/química , Oxirredução , Tamanho da Partícula , Alimentos de Soja/análise , Temperatura , Fatores de Tempo , Temperatura de Transição , Viscosidade
11.
Materials (Basel) ; 14(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885612

RESUMO

Copper(II) carboxylate compounds with ethylamine and isopropylamine of the general formula [Cu2(RNH2)2(µ-O2CRf)4], where R = Et, iPr, and Rf = CnF2n+1, n = 1-6, were characterised in the condensed and gas phases by electron impact mass spectrometry (EI MS), IR spectroscopy, and thermal analysis. A mass spectra analysis confirmed the presence of metallated species in the gas phase. Among the observed fragments, the pseudomolecular ions [Cu2(RNH2)2(µ-O2CRf)3]+ were found, which suggests the dimeric structure of the studied complexes with axially N-coordinated ethyl- or isopropylamine molecules and bridging perfluorinated carboxylates. TGA studies demonstrated that copper transfer to the gas phase occurs even under atmospheric pressure. The temperature range of the [Cu2(RNH2)2(µ-O2CRf)4] and other copper carriers detection, observed in variable temperature infrared spectra, depends on the type of amine. The possible mechanisms of the decomposition of the tested compounds are proposed. The copper films were produced without additional reducing agents despite using Cu(II) CVD precursors in the chemical vapor deposition experiments. The layers of the gel-like complexes were fabricated in both spin- and dip-coating experiments, resulting in copper or copper oxide materials when heated. Dinuclear copper(II) carboxylate complexes with ethyl- and isopropylamine [Cu2(RNH2)2(µ-O2CRf)4] can be applied for the formation of metal or metal oxide materials, also in the nanoscale, by vapour and 'wet' deposition methods.

12.
Foods ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828795

RESUMO

The aim of this study was the evaluation of the influence of different HHP levels (150 and 300 MPa) and time treatment (5, 10, 20 min) on the gelation and properties of hydrogels with different inulin concentration (15, 20, 25 g/100 g). High-pressure treatment, in tested ranges, induces inulin gels and allows obtaining gel structures even at a lowest tested inulin content (i.e., 15 g/100 g). Selecting the pressure parameters, it is possible to modify the characteristics of the created hydrogels. The use of higher pressure (i.e., 300 MPa) allows to increase the stability of the hydrogels and change their structure to more compressed, which results in higher yield stress, lower spreadability, harder and more adhesive structure. For example, increasing the inulin gelling induction pressure (concentration 20 g/100 g) from 150 to 300 MPa with a time treatment of 10 min resulted in an increase in yield stress from 38.1 to 711.7 Pa, spreadability force from 0.59 to 4.59 N, firmness from 0.11 to 1.46 N, and adhesiveness from -0.06 to -0.65 N. Extending the time treatment of HHP increases this effect, but mainly when higher pressure and a higher concentration of inulin are being used. For example, extension of time treatment at 300 MPa pressure from 5 to 20 min resulted in an increase in yield stress from 774.8 to 1273.8 Pa, spreadability force from 6.28 to 8.43 N, firmness from 1.87 to 2.98 N, and adhesiveness from -0.94 to -1.27 N. The obtained results indicate the possibility of using HHP to create inulin hydrogels tailored to the characteristics in a specific food product.

13.
Micromachines (Basel) ; 12(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065297

RESUMO

High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results.

14.
Nutrients ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859040

RESUMO

BACKGROUND: Numerous scientific studies on patients with autism spectrum disorder (ASD) suggest a significant role of inflammation processes or lipid disorders in this spectrum of neurodevelopmental disorders. Unfortunately, there is a lack of assessments of changes over time regarding level of lipids and inflammatory markers in people diagnosed with ASD using different diets. The aim of this study was to evaluate changes in lipid profile, high sensitivity C-reactive protein (hs-CRP) and body mass index (BMI) in individuals diagnosed with ASD and healthy controls. Variables were assessed at two time points (2015/17 and 2017/20) for each subject. METHODS: After applying the selection criteria, for the first assessment period, 96 participants were qualified (the group consisted of 59 males with ASD and 37 healthy volunteers, i.e., age-matched control group-CG). The final assessment included 93 participants (57 from ASD group and 36 from CG). Subjects were on low-fat diet (LFD), gluten-casein-free diet (GF-CF) and regular diet (RD), respectively. All members of CG were on regular diet. A fasting lipid profile and hs-CRP level were analyzed. BMI and percentiles were calculated. Eating habits were checked by analyzing data from questionnaires. Principal component analysis (PCA) was used separately for every assessment. The Mann-Whitney U test was used to compare the medians of variables in the scheme of pairwise comparisons between control and ASD groups on different diets for separate assessment, while differences over time between variables were tested by Wilcoxon signed-rank test. RESULTS: Statistically significant differences between BMI, CRP, triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), non-HDL-C and TC/HDL ratio were found in ASD group in comparison to healthy volunteers (increased BMI, CRP and TC/HDL and decreased HDL-C for all types of diets, increased TG in the group of LFD and RD individual and increased non-HDL-C in the group of GF-CF and RD individuals) during the first assessment period. The second assessment over time also showed increased levels of TC, non HDL-C and TC/HDL and decreased level of HDL-C for all ASD individuals regardless of diets used, while BMI and CRP increased only for individuals on LFD and RD. No statistically significant correlations between age of participants and other variables comparing with CG were found. CONCLUSIONS: Our studies suggest that targeted, individualized nutritional pattern and periodic screening for lipid and immune disorders would be beneficial for teenagers and adults diagnosed with ASD.


Assuntos
Transtorno do Espectro Autista/sangue , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Dieta/métodos , Lipídeos/sangue , Adolescente , Adulto , Biomarcadores/sangue , Dieta com Restrição de Gorduras , Dieta Livre de Glúten , Feminino , Seguimentos , Humanos , Masculino , Tempo , Adulto Jovem
15.
Nutrients ; 12(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266486

RESUMO

Selenium is involved in many metabolic pathways that are critical for life. Information concerning the metabolic effects of selenium in autism spectrum disorder (ASD) and obesity is still conflicting and incomplete. The pre- and post-pubertal selenium profiles of patients with ASD and obesity have not yet been investigated. The goal of the study was to examine selenium content before and after puberty in euthyroid children diagnosed with ASD, compared to age-matched neurotypical controls, with respect to overweight or obesity as a co-existing pathology. Serum, toenail, and 24h urine selenium levels were determined by inductively coupled plasma mass spectrometry in 287 prepubertal children (mean age 8.09 years), divided into groups: ASD with overweight/obesity (ASD+/Ob+); ASD without overweight/obesity (ASD+/Ob-); non-ASD with overweight/obesity (ASD-/Ob+); and non-ASD without overweight/obesity (ASD-/Ob-). The assessment was repeated in 258 of the children after puberty (mean age 14.26 years).The lowest serum (p < 0.001), urine (p < 0.001) and toenail (p < 0.001) selenium levels before and after puberty were observed in ASD+/Ob+ patients, and the highest in ASD-/Ob-. There were no differences in serum/toenail selenium levels between ASD+/Ob- and ASD-/Ob+ groups. The presence of ASD was associatedwith lower serum (p < 0.001) and toenail (p < 0.001) selenium in BMI-matched groups. In neurotypical patients, post-pubertal serum selenium levels were lower (p < 0.001) than pre-pubertal levels. In the multiple linear regression analyses, selenium levels showed inverse relationships with BMI (p < 0.001) and male gender (p < 0.001), irrespective of the sample type. The serum (p = 0.002) and toenail (p < 0.001) selenium levels were inversely associated with the presence of ASD. ASD, obesity/overweight, and male gender have independent impacts on selenium levels in children. Puberty may affect selenium content in neurotypical children of both genders, but not in ASD patients.


Assuntos
Transtorno do Espectro Autista/complicações , Obesidade/complicações , Sobrepeso/complicações , Puberdade/fisiologia , Selênio/deficiência , Adolescente , Índice de Massa Corporal , Criança , Feminino , Humanos , Masculino , Unhas/química , Selênio/análise , Selênio/sangue , Fatores Sexuais
16.
J Am Chem Soc ; 131(29): 10279-92, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19580281

RESUMO

Magnetic properties and high-field EPR spectra of three previously unknown tetranuclear quinoline adducts of copper(II) trifluoroacetate were studied, and their X-ray structures were determined. Two green complexes containing a mu(4)-oxo bridge, Cu(4)O(CF(3)COO)(6)(quin)(4) x (C(6)H(5)CH(3))(0.6) (orthorhombic, Pbca, a = 15.278(3), b = 23.227(5), c = 34.895(7) A) and Cu(4)O(CF(3)COO)(6)(quin)(4) x (C(6)H(6))(0.8) (monoclinic, P2/c, a = 21.933(4), b = 11.176(2), c = 23.927(5) A, beta = 97.41(3) degrees) are ferromagnetic, whereas the blue complex [Cu(4)(OH)(2)(CF(3)COO)(8)(quin)(2)](2-)(quinH(+))(2) (monoclinic, a = 21.933(4), b = 11.176(2), c = 23.927(5) A, beta = 97.41(3) degrees), formed in humid air from the solid dimeric [Cu(CF(3)COO)(2) x (quin)](2), is antiferromagnetic, as is the tetranuclear blue product formed in humid air of the mu(4)-oxo tetramers. High-field EPR spectra allowed determination of the spin Hamiltonian parameters for the spin quintet state (S = 2) in the ferromagnetic complexes, which facilitated accurate interpretation of their magnetic susceptibility data. "Broken symmetry" DFT calculations were performed to estimate the exchange integrals in all three tetranuclear complexes, showing surprisingly good agreement with experimental results. Negative sign of the zero-field splitting parameter D in two binuclear complexes, [Cu(CF(3)COO)(2) x CH(3)CN](2) and [Cu(CF(3)COO)(2) x (quin)](2), was found from single-crystal high-field EPR spectra, confirming recent results for nonhalogenated dimeric copper carboxylates.

17.
Beilstein J Nanotechnol ; 9: 384-398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515952

RESUMO

In the present study we have performed electron collision experiments with copper carboxylate complexes: [Cu2(t-BuNH2)2(µ-O2CC2F5)4], [Cu2(s-BuNH2)2(µ-O2CC2F5)4], [Cu2(EtNH2)2(µ-O2CC2F5)4], and [Cu2(µ-O2CC2F5)4]. Mass spectrometry was used to identify the fragmentation pattern of the coordination compounds produced in crossed electron - molecular beam experiments and to measure the dependence of ion yields of positive and negative ions on the electron energy. The dissociation pattern of positive ions contains a sequential loss of both the carboxylate ligands and/or the amine ligands from the complexes. Moreover, the fragmentation of the ligands themselves is visible in the mass spectrum below m/z 140. For the studied complexes the metallated ions containing both ligands, e.g., Cu2(O2CC2F5)(RNH2)+, Cu2(O2CC2F5)3(RNH2)2+ confirm the evaporation of whole complex molecules. A significant production of Cu+ ion was observed only for [Cu2(µ-O2CC2F5)4], a weak yield was detected for [Cu2(EtNH2)2(µ-O2CC2F5)4] as well. The dissociative electron attachment processes leading to formation of negative ions are similar for all investigated molecules as the highest unoccupied molecular orbital of the studied complexes has Cu-N and Cu-O antibonding character. For all complexes, formation of the Cu2(O2CC2F5)4-• anion is observed together with mononuclear DEA fragments Cu(O2CC2F5)3-, Cu(O2CC2F5)2- and Cu(O2CC2F5)-•. All dominant DEA fragments of these complexes are formed through single particle resonant processes close to 0 eV.

18.
Beilstein J Nanotechnol ; 9: 57-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379701

RESUMO

Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0-15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies.

19.
Beilstein J Nanotechnol ; 9: 224-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441267

RESUMO

Focused electron beam induced deposition (FEBID) is a flexible direct-write method to obtain defined structures with a high lateral resolution. In order to use this technique in application fields such as plasmonics, suitable precursors which allow the deposition of desired materials have to be identified. Well known for its plasmonic properties, silver represents an interesting candidate for FEBID. For this purpose the carboxylate complex silver(I) pentafluoropropionate (AgO2CC2F5) was used for the first time in FEBID and resulted in deposits with high silver content of up to 76 atom %. As verified by TEM investigations, the deposited material is composed of pure silver crystallites in a carbon matrix. It showed good electrical properties and a strong Raman signal enhancement. Interestingly, silver crystal growth presents a strong dependency on electron dose and precursor refreshment.

20.
Beilstein J Nanotechnol ; 9: 842-849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600145

RESUMO

Carboxylates constitute an extremely promising class of precursor compounds for the electron beam induced deposition of silver. In this work both silver 2,2-dimethylbutyrate and silver pentafluoropropionate were investigated with respect to their dwell-time-dependent deposition behavior and growth characteristics. While silver 2,2-dimethylbutyrate showed a strong depletion in the center of the impinging electron beam profile hindering any vertical growth, silver pentafluoropropionate indicated a pronounced dependency of the deposit height on the dwell time. Truly three-dimensional silver structures could be realized with silver pentafluoropropionate. The pillars were polycrystalline with silver contents of more than 50 atom % and exhibit strong Raman enhancement. This constitutes a promising route towards the direct electron beam writing of three-dimensional plasmonic device parts from the gas phase.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa