Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123938, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408554

RESUMO

The stability of lactate dehydrogenase (LDH) and ß-galactosidase (ß-gal), incorporated in arginine/pullulan (A/P) mixtures at various weight ratios by lyophilization, was determined. The physicochemical characteristics of various A/P mixtures were assessed. With decreasing A/P ratios, the glass transition temperature of the formulations increased. Furthermore, arginine crystallization due to high relative humidity (RH) exposure was prevented at an A/P weight ratio of 4/6 or less. When stored at 0 % RH / 60 °C for 4 weeks, arginine was superior to pullulan as stabilizer. During storage at 43 % RH / 30 ℃ for 4 weeks, the enzymatic activity of LDH was best retained at an A/P weight ratio of 2/8, while ß-gal activity was relatively well-retained at A/P weight ratios of both 8/2 and 2/8. LDH seemed to be more prone to degradation in the rubbery state. In the glassy state, ß-gal degraded faster than LDH. Solid-state nuclear magnetic resonance spectroscopy showed that (labeled) arginine experienced a different interaction in the two protein samples, reflecting a modulation of long-range correlations of the arginine side chain nitrogen atoms (Nε, Nη). In summary, LDH stabilization in the A/P matrix requires vitrification. Further stabilization difference between LDH and ß-gal may be dependent on the interaction with arginine.


Assuntos
Arginina , Proteínas , Arginina/química , Proteínas/química , Glucanos , L-Lactato Desidrogenase/química , Liofilização/métodos , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa