Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(50): 9576-9588, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33158963

RESUMO

Single-cell analysis is revealing increasing diversity in gene expression profiles among brain cells. Traditional promotor-based viral gene expression techniques, however, cannot capture the growing variety among single cells. We demonstrate a novel viral gene expression strategy to target cells with specific miRNA expression using miRNA-guided neuron tags (mAGNET). We designed mAGNET viral vectors containing a CaMKIIα promoter and microRNA-128 (miR-128) binding sites, and labeled CaMKIIα+ cells with naturally low expression of miR-128 (Lm128C cells) in male and female mice. Although CaMKIIα has traditionally been considered as an excitatory neuron marker, our single-cell sequencing results reveal that Lm128C cells are CaMKIIα+ inhibitory neurons of parvalbumin or somatostatin subtypes. Further evaluation of the physiological properties of Lm128C cell in brain slices showed that Lm128C cells exhibit elevated membrane excitability, with biophysical properties closely resembling those of fast-spiking interneurons, consistent with previous transcriptomic findings of miR-128 in regulating gene networks that govern membrane excitability. To further demonstrate the utility of this new viral expression strategy, we expressed GCaMP6f in Lm128C cells in the superficial layers of the motor cortex and performed in vivo calcium imaging in mice during locomotion. We found that Lm128C cells exhibit elevated calcium event rates and greater intrapopulation correlation than the overall CaMKIIα+ cells during movement. In summary, the miRNA-based viral gene targeting strategy described here allows us to label a sparse population of CaMKIIα+ interneurons for functional studies, providing new capabilities to investigate the relationship between gene expression and physiological properties in the brain.SIGNIFICANCE STATEMENT We report the discovery of a class of CaMKIIα+ cortical interneurons, labeled via a novel miRNA-based viral gene targeting strategy, combinatorial to traditional promoter-based strategies. The fact that we found a small, yet distinct, population of cortical inhibitory neurons that express CaMKIIα demonstrates that CaMKIIα is not as specific for excitatory neurons as commonly believed. As single-cell sequencing tools are providing increasing insights into the gene expression diversity of neurons, including miRNA profile data, we expect that the miRNA-based gene targeting strategy presented here can help delineate many neuron populations whose physiological properties can be readily related to the miRNA gene regulatory networks.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Marcação de Genes , Interneurônios/metabolismo , MicroRNAs/genética , Córtex Motor/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Vetores Genéticos , Masculino , Camundongos , MicroRNAs/metabolismo
2.
iScience ; 23(7): 101330, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674057

RESUMO

Fibronectin intrabodies generated with mRNA display (FingRs) are a recently developed tool for labeling excitatory or inhibitory synapses, with the benefit of not altering endogenous synaptic protein expression levels or synaptic transmission. Here, we generated a viral vector FingR toolbox that allows for multi-color, neuron-type-specific labeling of excitatory or inhibitory synapses in multiple brain regions. We screened various fluorophores, FingR fusion configurations, and transcriptional control regulations in adeno-associated virus (AAV) and retrovirus vector designs. We report the development of a red FingR variant and demonstrated dual labeling of excitatory and inhibitory synapses in the same cells. Furthermore, we developed cre-inducible FingR AAV variants and demonstrated their utility, finding that the density of inhibitory synapses in aspiny striatal cholinergic interneurons remained unchanged in response to dopamine depletion. Finally, we generated FingR retroviral vectors, which enabled us to track the development of excitatory and inhibitory synapses in hippocampal adult-born granule cells.

3.
Cell Rep ; 24(2): 294-303, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996091

RESUMO

More specific and broadly applicable viral gene-targeting tools for labeling neuron subtypes are needed to advance neuroscience research, especially in rodent transgenic disease models and genetically intractable species. Here, we develop a viral vector that restricts transgene expression to GABAergic interneurons in the rodent neocortex by exploiting endogenous microRNA regulation. Our interneuron-targeting, microRNA-guided neuron tag, "GABA mAGNET," achieves >95% interneuron selective labeling in the mouse cortex, including in a murine model of autism and also some preferential labeling of interneurons in the rat brain. We demonstrate an application of our GABA mAGNET by performing simultaneous, in vivo optogenetic control of two distinct neuron subtypes. This interneuron labeling tool highlights the potential of microRNA-based viral gene targeting to specific neuron subtypes.


Assuntos
Córtex Cerebral/metabolismo , Marcação de Genes , Interneurônios/metabolismo , Lentivirus/metabolismo , MicroRNAs/metabolismo , Coloração e Rotulagem , Animais , Transtorno Autístico/patologia , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Optogenética , Ratos , Sinapsinas/genética , Ácido gama-Aminobutírico/metabolismo
4.
Neuropsychopharmacology ; 42(7): 1458-1470, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27711047

RESUMO

Compulsive, binge eating of highly palatable food constitutes a core feature of some forms of obesity and eating disorders, as well as of the recently proposed disorder of food addiction. Trace amine-associated receptor 1 (TAAR1) is a highly conserved G-protein-coupled receptor bound by endogenous trace amines. TAAR1 agonists have been shown to reduce multiple behavioral effects of drugs of abuse through their actions on the mesocorticolimbic system. In this study, we hypothesized that TAAR1 may have a role in compulsive, binge-like eating; we tested this hypothesis by assessing the effects of a TAAR1 agonist, RO5256390, in multiple excessive feeding-related behaviors induced by limiting access to a highly palatable diet in rats. Our results show that RO5256390 blocked binge-like eating in rats responding 1 h per day for a highly palatable sugary diet. Consistent with a palatability-selective effect, drug treatment selectively reduced the rate and regularity of palatable food responding, but it did not affect either baseline intake or food restriction-induced overeating of the standard chow diet. Furthermore, RO5256390 fully blocked compulsive-like eating when the palatable diet was offered in an aversive compartment of a light/dark conflict box, and blocked the conditioned rewarding properties of palatable food, as well as palatable food-seeking behavior in a second-order schedule of reinforcement. Drug treatment had no effect on either anxiety-like or depressive-like behavior, and it did not affect control performance in any of the tests. Importantly, rats exposed to palatable food showed decreased TAAR1 levels in the medial prefrontal cortex (mPFC), and RO5256390 microinfused into the infralimbic, but not prelimbic, subregion of the mPFC-reduced binge-like eating. Altogether, these results provide evidence for TAAR1 agonism as a novel pharmacological treatment for compulsive, binge eating.


Assuntos
Transtorno da Compulsão Alimentar/metabolismo , Transtorno da Compulsão Alimentar/prevenção & controle , Comportamento Compulsivo/metabolismo , Comportamento Compulsivo/prevenção & controle , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Transtorno da Compulsão Alimentar/psicologia , Comportamento Compulsivo/psicologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/psicologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar
5.
Chem Biol ; 20(6): 784-95, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23790489

RESUMO

The ß-defensins are a class of small, cationic proteins first recognized as antimicrobial components of the innate and adaptive immune system. More recently, one of the major ß-defensins produced in skin, ß-defensin 3, has been discovered to function as a melanocortin receptor ligand in vivo and in vitro, but its biophysical and pharmacological basis of action has been enigmatic. Here, we report functional and biochemical studies focused on human ß-defensin 3 (HBD3) and melanocortin receptors 1 and 4. Genetic and pharmacologic studies indicate that HBD3 acts as a neutral melanocortin receptor antagonist capable of blocking the action of either stimulatory agonists such as α-melanocyte stimulating hormone or inhibitory inverse agonists such as Agouti signaling protein (ASIP) and Agouti-related protein (AGRP). A comprehensive structure-function analysis demonstrates that two patches of positively charged residues, located on opposite poles of HBD3 and spatially organized by the compact ß-defensin fold, are primarily responsible for high-affinity binding to melanocortin receptors. These findings identify a distinct mode of melanocortin receptor-ligand interactions based primarily on electrostatic complementarity, with implications for designing ligands that target melanocortin and potentially other seven transmembrane receptors.


Assuntos
Receptor Tipo 1 de Melanocortina/metabolismo , beta-Defensinas/metabolismo , Proteína Agouti Sinalizadora/agonistas , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Proteína Relacionada com Agouti/agonistas , Proteína Relacionada com Agouti/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Receptor Tipo 1 de Melanocortina/antagonistas & inibidores , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Eletricidade Estática , beta-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa