Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
2.
Neurogenetics ; 25(2): 79-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240911

RESUMO

Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.


Assuntos
Narcolepsia , Linhagem , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Alelos , Cataplexia/genética , Consanguinidade , Genes Recessivos , Homozigoto , Mutação/genética , Narcolepsia/genética , Orexinas/genética , Fenótipo
3.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185208

RESUMO

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Assuntos
Deficiência Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagem , Genótipo , Deficiência Intelectual/genética , Fenótipo , Convulsões/genética
4.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538041

RESUMO

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endossomos/genética , Endossomos/metabolismo , Células HEK293 , Lectinas Tipo C/genética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Mol Genet Metab ; 139(3): 107624, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348148

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Prevalência , Dopamina/metabolismo , Genótipo , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/genética
6.
Eur J Pediatr ; 182(6): 2535-2545, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36928758

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare inherited neurometabolic disorder that can lead to severe physical and developmental impairment. This report includes 16 patients from the Middle East and is the largest series of patients with confirmed AADC deficiency from this region reported to date. The patients displayed a range of signs and symptoms at presentation and almost all failed to reach major motor milestones. Missed and delayed diagnoses were common leading to the late introduction of targeted treatments. Eight unique variants were identified in the DDC gene, including six missense and two intronic variants. A previously undescribed variant was identified: an intronic variant between exons 13 and 14 (c.1243-10A>G). The patients were mostly treated with currently recommended medications, including dopamine agonists, vitamin B6, and monoamine oxidase inhibitors. One patient responded well, but treatment outcomes were otherwise mostly limited to mild symptomatic improvements. Five patients had died by the time of data collection, confirming that the condition is associated with premature mortality. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age.  Conclusions: Delays in the diagnosis of AADC deficiency are common. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age. What is Known: • Aromatic L-amino acid decarboxylase deficiency is a rare neurometabolic disorder that can lead to severe physical and developmental impairment. • Currently recommended medications provide mostly mild symptomatic improvements. What is New: • The clinical presentation of sixteen patients with confirmed AADC deficiency varied considerably and almost all failed to reach major motor milestones. • There is an urgent need for earlier diagnosis, given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Mutação
7.
Neurosciences (Riyadh) ; 28(2): 85-90, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37045460

RESUMO

Pediatric sleep disorders are a common, mainly among children with pre-existing disabilities, neurological conditions, and neurodevelopmental disorders. The consequences are variable, and sleep disorders may be associated with deficits in neurocognitive performance and growth failure. Rising awareness about sleep disorders among pediatricians will improve the early diagnosis and management of these disorders. This review describes normal sleep patterns in infants and children and provide a recent update on common sleep disorders that improve the diagnosis and treatment of children with sleep disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Transtornos do Sono-Vigília , Lactente , Criança , Humanos , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/terapia , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/terapia , Transtornos do Sono-Vigília/complicações , Sono
8.
Hum Genet ; 141(1): 55-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750646

RESUMO

Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission-fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial "dysmorphology" can be helpful in interpreting variants to reach a molecular diagnosis.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Linhagem Celular , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mutação de Sentido Incorreto , Sequenciamento do Exoma
9.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
10.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
11.
Arch Dis Child Educ Pract Ed ; 106(2): 125-128, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32900776

RESUMO

Acute weakness and dyspnoea are unusual presentation after allogeneic haematopoietic stem cell transplantation (HSCT) complicated by chronic graft-versus-host disease (GVHD). The differential diagnosis and management are challenging for the paediatrician. This case chronicles the diagnostic journey of a child who presented with weakness, dyspnoea and difficulty in speech, 2 years after allogeneic HSCT and GVHD and explores the approach to neurological manifestations in this context.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Debilidade Muscular , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Debilidade Muscular/diagnóstico , Debilidade Muscular/etiologia
12.
Neurosciences (Riyadh) ; 26(3): 229-235, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230076

RESUMO

Inherited metabolic diseases usually present a complex clinical picture in which seizures are one of various neurological manifestations, which include developmental delays/regression, acute encephalopathy, neuropsychiatric manifestations, and movement disorders. However, a seizure can be the prominent feature in inherited metabolic disease. The specific diagnosis of an underlying inherited metabolic disorder in epileptic patients may help design specific treatments that can improve the seizures and stop neurodegeneration. In several inherited metabolic diseases such as vitamin-responsive epilepsies and other metabolic epilepsies, seizures are refractory to antiseizure medications but respond to specific treatments based on vitamin and cofactor supplementation or diet. This review discusses our current understanding of these inherited metabolic disorders associated with epilepsy, where early diagnosis and treatment initiation will significantly improve the outcome.


Assuntos
Epilepsia , Doenças Metabólicas , Epilepsia/diagnóstico , Epilepsia/terapia , Humanos , Doenças Metabólicas/complicações , Doenças Metabólicas/diagnóstico , Convulsões
13.
Epilepsia ; 61(4): 679-692, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167590

RESUMO

OBJECTIVE: Through international collaboration, we evaluated the phenotypic aspects of a multiethnic cohort of KCNT1-related epilepsy and explored genotype-phenotype correlations associated with frequently encountered variants. METHODS: A cross-sectional analysis of children harboring pathogenic or likely pathogenic KCNT1 variants was completed. Children with one of the two more common recurrent KCNT1 variants were compared with the rest of the cohort for the presence of particular characteristics. RESULTS: Twenty-seven children (15 males, mean age = 40.8 months) were included. Seizure onset ranged from 1 day to 6 months, and half (48.1%) exhibited developmental plateauing upon onset. Two-thirds had epilepsy of infancy with migrating focal seizures (EIMFS), and focal tonic seizures were common (48.1%). The most frequent recurrent KCNT1 variants were c.2800G>A; p.Ala934Thr (n = 5) and c.862G>A; p.Gly288Ser (n = 4). De novo variants were found in 96% of tested parents (23/24). Sixty percent had abnormal magnetic resonance imaging (MRI) findings. Delayed myelination, thin corpus callosum, and brain atrophy were the most common. One child had gray-white matter interface indistinctness, suggesting a malformation of cortical development. Several antiepileptic drugs (mean = 7.4/patient) were tried, with no consistent response to any one agent. Eleven tried quinidine; 45% had marked (>50% seizure reduction) or some improvement (25%-50% seizure reduction). Seven used cannabidiol; 71% experienced marked or some improvement. Fourteen tried diet therapies; 57% had marked or some improvement. When comparing the recurrent variants to the rest of the cohort with respect to developmental trajectory, presence of EIMFS, >500 seizures/mo, abnormal MRI, and treatment response, there were no statistically significant differences. Four patients died (15%), none of sudden unexpected death in epilepsy. SIGNIFICANCE: Our cohort reinforces common aspects of this highly pleiotropic entity. EIMFS manifesting with refractory tonic seizures was the most common. Cannabidiol, diet therapy, and quinidine seem to offer the best chances of seizure reduction, although evidence-based practice is still unavailable.


Assuntos
Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsias Parciais/terapia , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Dieta Cetogênica , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/terapia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Quinidina , Estudos Retrospectivos
14.
Neurosciences (Riyadh) ; 25(3): 182-187, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32683397

RESUMO

OBJECTIVE: To assess compliance with the 2017 Saudi pediatric status epilepticus management guidelines and to printout the main obstacle for adherence to the guidelines. METHODS: A cross sectional study conducted in September 2019, using electronic survey. The survey sent to all the Pediatric Emergency physicians practicing in Kingdom of Saudi Arabia (KSA) through emails and WhatsApp and the questionnaire based on clinical scenario written in English language. RESULTS: One hundred and three (70%) of 147 physicians working in KSA and covering pediatric emergency departments responded to the survey. Only 20% of the physicians reported full compliance to all 4 guideline components; 57% reported that they were not aware of the published guidelines. CONCLUSION: Pediatric emergency physicians reported poor compliance to the 2017 published guidelines for the treatment of children with convulsive status epilepticus in KSA.


Assuntos
Fidelidade a Diretrizes/estatística & dados numéricos , Pediatras , Guias de Prática Clínica como Assunto , Padrões de Prática Médica , Estado Epiléptico/terapia , Estudos Transversais , Serviço Hospitalar de Emergência , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Arábia Saudita , Inquéritos e Questionários
15.
Neurosciences (Riyadh) ; 25(4): 287-291, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33130809

RESUMO

OBJECTIVE: To describe the epilepsy, neuropsychiatric manifestations, and neuroimaging findings in a group of patients with 22q11.2 DS, and to correlate the size of the deleted genetic material with the severity of the phenotype. METHODS: We retrospectively analyzed the medical records of 28 patients (21 pediatric patients and 7 adults) with a genetically confirmed diagnosis of 22q11.2 DS. Clinical data (epilepsy, neurological exam, neuropsychological and developmental assessment, and psychiatric disorders), neuroimaging, and cytogenetic tests were analyzed RESULTS: Of the 28 patients with 22q11.2 DS, 6 (21.4%) had epileptic seizures, 2 had symptomatic hypocalcemic seizures, 4 (14.2%) had a psychiatric disorder, which comprised of attention deficit hyperactivity disorder, autism spectrum disorder, psychosis, and mood disorder, and 17 (60.7%) had developmental delay. All patients with epilepsy had a developmental delay. Twelve patients underwent a neuropsychology assessment. Intellectual levels ranged from moderate intellectual disability (7/12, 58%) to average (5/12, 41.6%). Of the 16 patients, 6 (37.5%) had a normal brain, while 10 (62.5%) had abnormal neuroimaging findings. No significant correlation was found between the size of the deleted genetic material and the severity of the phenotype. CONCLUSION: 22q11.2DS patients are at high risk to develop epilepsy, neuropsychiatric manifestations, and structural brain abnormalities. This indicates that this defined genetic locus is crucial for the development of the nervous system, and patients with 22q11.2 DS have genetic susceptibility to develop epilepsy.


Assuntos
Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Adolescente , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Masculino , Transtornos Mentais/genética , Neuroimagem , Estudos Retrospectivos , Adulto Jovem
16.
Genet Med ; 21(3): 545-552, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30214071

RESUMO

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Assuntos
Microcefalia/genética , Microcefalia/fisiopatologia , Adulto , Criança , Pré-Escolar , Nanismo/genética , Feminino , Genômica/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma/métodos
17.
Genet Med ; 21(3): 736-742, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30237576

RESUMO

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
18.
Genet Med ; 21(11): 2521-2531, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31092906

RESUMO

PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.


Assuntos
Doenças Musculares/genética , Fator de Transcrição PAX7/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Mioblastos , Fator de Transcrição PAX7/metabolismo , Linhagem , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos
20.
Neurosciences (Riyadh) ; 24(3): 155-163, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31380813

RESUMO

Cerebral palsy is a syndrome that encompasses a large group of childhood movement and posture disorders that result from a lesion occurring in the developing brain. The clinical presentation of many metabolic and genetic conditions, particularly in highly consanguineous populations, can mimic cerebral palsy particularly at early age. The aim of this review article is to identify the clinical features that should alert the physician to the possibility of disorders that resemble cerebral palsy, the clinical and neuroimaging red flags, and highlight some metabolic and genetic conditions which may present with spasticity, ataxia and dyskinesia. In the case of metabolic or genetic disorder, making a precise diagnosis is particularly important for the possibility of treatment, accurate prognosis and genetic counseling.


Assuntos
Paralisia Cerebral/diagnóstico , Doenças Genéticas Inatas/diagnóstico , Doenças Metabólicas/diagnóstico , Diagnóstico Diferencial , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa