Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Development ; 146(20)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604710

RESUMO

During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.


Assuntos
Encéfalo/citologia , Morfogênese/fisiologia , Animais , Encéfalo/metabolismo , Embrião de Galinha , Galinhas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Análise de Elementos Finitos , Morfogênese/genética , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 115(12): 3156-3161, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507201

RESUMO

During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/anormalidades , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino
3.
Development ; 144(13): 2381-2391, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526751

RESUMO

For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.


Assuntos
Actomiosina/metabolismo , Sistema Digestório/embriologia , Coração/embriologia , Modelos Biológicos , Organogênese , Animais , Proliferação de Células , Embrião de Galinha , Simulação por Computador , Análise de Elementos Finitos
4.
Dev Dyn ; 247(7): 914-923, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29696727

RESUMO

BACKGROUND: Perturbations to embryonic hemodynamics are known to adversely affect cardiovascular development. Vitelline vein ligation (VVL) is a model of reduced placental blood flow used to induce cardiac defects in early chick embryo development. The effect of these hemodynamic interventions on maturing elastic arteries is largely unknown. We hypothesize that hemodynamic changes impact maturation of the dorsal aorta (DA). RESULTS: We examined the effects of VVL on hemodynamic properties well into the maturation process and the corresponding changes in aortic dimensions, wall composition, and gene expression. In chick embryos, we found that DA blood velocity was reduced immediately postsurgery at Hamburger-Hamilton (HH) stage 18 and later at HH36, but not in the interim. Throughout this period, DA diameter adapted to maintain a constant shear stress. At HH36, we found that VVL DAs showed a substantial decrease in elastin and a modest increase in collagen protein content. In VVL DAs, up-regulation of elastic fiber-related genes followed the down-regulation of flow-dependent genes. Together, these suggest the existence of a compensatory mechanism in response to shear-induced delays in maturation. CONCLUSIONS: The DA's response to hemodynamic perturbations invokes coupled mechanisms for shear regulation and matrix maturation, potentially impacting the course of vascular development. Developmental Dynamics 247:914-923, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Aorta/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Hemodinâmica , Animais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Embrião de Galinha , Elasticidade , Elastina/metabolismo , Embrião não Mamífero , Ligadura/métodos , Resistência ao Cisalhamento
5.
Phys Biol ; 15(2): 025001, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28914615

RESUMO

During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.


Assuntos
Apoptose , Cristalino/embriologia , Retina/embriologia , Animais , Fenômenos Biomecânicos , Embrião de Galinha , Biologia Computacional
6.
Development ; 139(9): 1680-90, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22492358

RESUMO

The heart is the first functioning organ to form during development. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move towards the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this model, the role of the endoderm is twofold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation. Here, using computational modeling and experiments on chick embryos, we present evidence supporting an active mechanical role for the endoderm during heart tube assembly. Label-tracking experiments suggest that active endodermal shortening around the AIP accounts for most of the heart field motion towards the midline. Results indicate that this shortening is driven by cytoskeletal contraction, as exposure to the myosin-II inhibitor blebbistatin arrested any shortening and also decreased both tissue stiffness (measured by microindentation) and mechanical tension (measured by cutting experiments). In addition, blebbistatin treatment often resulted in cardia bifida and abnormal foregut morphogenesis. Moreover, finite element simulations of our cutting experiments suggest that the endoderm (not the mesoderm) is the primary contractile tissue layer during this process. Taken together, these results indicate that contraction of the endoderm actively pulls the heart fields towards the embryonic midline, where they fuse to form the heart tube.


Assuntos
Movimento Celular/fisiologia , Endoderma/fisiologia , Coração/embriologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Fenômenos Biomecânicos , Embrião de Galinha , Compostos Heterocíclicos de 4 ou mais Anéis , Tomografia de Coerência Óptica
7.
Phys Biol ; 12(1): 016012, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635663

RESUMO

Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep 'zipping' together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.


Assuntos
Citoesqueleto/fisiologia , Coração/embriologia , Miocárdio/citologia , Animais , Embrião de Galinha
8.
Cereb Cortex ; 23(2): 488-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22368085

RESUMO

Spatial and temporal variations in cortical growth were studied in the neonatal ferret to illuminate the mechanisms of folding of the cerebral cortex. Cortical surface representations were created from magnetic resonance images acquired between postnatal day 4 and 35. Global measures of shape (e.g., surface area, normalized curvature, and sulcal depth) were calculated. In 2 ferrets, relative cortical growth was calculated between surfaces created from in vivo images acquired at P14, P21, and P28. The isocortical surface area transitions from a slower (12.7 mm(2)/day per hemisphere) to a higher rate of growth (36.7 mm(2)/day per hemisphere) approximately 13 days after birth, which coincides with the time of transition from neuronal proliferation to cellular morphological differentiation. Relative cortical growth increases as a function of relative geodesic distance from the origin of the transverse neurogenetic gradient and is related to the change in fractional diffusion anisotropy over the same time period. The methods presented here can be applied to study cortical growth during development in other animal models or human infants. Our results provide a quantitative spatial and temporal description of folding in cerebral cortex of the developing ferret brain, which will be important to understand the underlying mechanisms that drive folding.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Neurogênese , Animais , Feminino , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
9.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24509638

RESUMO

In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.


Assuntos
Análise de Elementos Finitos , Coração/embriologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Forma Celular , Embrião de Galinha , Coração/anatomia & histologia , Morfogênese , Miocárdio/citologia , Estresse Mecânico
10.
Development ; 137(22): 3801-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20929950

RESUMO

During its earliest stages, the avian embryo is approximately planar. Through a complex series of folds, this flat geometry is transformed into the intricate three-dimensional structure of the developing organism. Formation of the head fold (HF) is the first step in this cascading sequence of out-of-plane tissue folds. The HF establishes the anterior extent of the embryo and initiates heart, foregut and brain development. Here, we use a combination of computational modeling and experiments to determine the physical forces that drive HF formation. Using chick embryos cultured ex ovo, we measured: (1) changes in tissue morphology in living embryos using optical coherence tomography (OCT); (2) morphogenetic strains (deformations) through the tracking of tissue labels; and (3) regional tissue stresses using changes in the geometry of circular wounds punched through the blastoderm. To determine the physical mechanisms that generate the HF, we created a three-dimensional computational model of the early embryo, consisting of pseudoelastic plates representing the blastoderm and vitelline membrane. Based on previous experimental findings, we simulated the following morphogenetic mechanisms: (1) convergent extension in the neural plate (NP); (2) cell wedging along the anterior NP border; and (3) autonomous in-plane deformations outside the NP. Our numerical predictions agree relatively well with the observed morphology, as well as with our measured stress and strain distributions. The model also predicts the abnormal tissue geometries produced when development is mechanically perturbed. Taken together, the results suggest that the proposed morphogenetic mechanisms provide the main tissue-level forces that drive HF formation.


Assuntos
Embrião de Galinha/metabolismo , Cabeça/embriologia , Morfogênese , Organogênese , Animais , Fenômenos Biomecânicos , Ectoderma/metabolismo , Modelos Biológicos
11.
Birth Defects Res C Embryo Today ; 96(2): 132-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22692887

RESUMO

In the developing embryo, tissues differentiate, deform, and move in an orchestrated manner to generate various biological shapes driven by the complex interplay between genetic, epigenetic, and environmental factors. Mechanics plays a key role in regulating and controlling morphogenesis, and quantitative models help us understand how various mechanical forces combine to shape the embryo. Models allow for the quantitative, unbiased testing of physical mechanisms, and when used appropriately, can motivate new experimentaldirections. This knowledge benefits biomedical researchers who aim to prevent and treat congenital malformations, as well as engineers working to create replacement tissues in the laboratory. In this review, we first give an overview of fundamental mechanical theories for morphogenesis, and then focus on models for specific processes, including pattern formation, gastrulation, neurulation, organogenesis, and wound healing. The role of mechanical feedback in development is also discussed. Finally, some perspectives aregiven on the emerging challenges in morphomechanics and mechanobiology.


Assuntos
Simulação por Computador , Desenvolvimento Embrionário , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Embrião de Galinha , Humanos , Morfogênese/fisiologia
12.
Phys Biol ; 9(6): 066007, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160445

RESUMO

In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.


Assuntos
Actomiosina/análise , Actomiosina/metabolismo , Encéfalo/embriologia , Embrião de Galinha/embriologia , Actomiosina/ultraestrutura , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Forma Celular , Embrião de Galinha/citologia , Embrião de Galinha/metabolismo , Embrião de Galinha/ultraestrutura , Modelos Biológicos
13.
J Biomech Eng ; 134(2): 024502, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22482677

RESUMO

Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.


Assuntos
Galinhas , Elasticidade , Coração/anatomia & histologia , Miocárdio/citologia , Animais , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Coração/crescimento & desenvolvimento , Viscosidade
14.
J Elast ; 145(1-2): 77-98, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35400797

RESUMO

Morphogenesis is regulated by genetic, biochemical, and biomechanical factors, but the feedback controlling the interactions between these factors remains poorly understood. A previous study has found that compressing the brain tube of the early chick embryo induces changes in contractility and nuclear shape in the neuroepithelial wall. Assuming this response involves mechanical feedback, we use experiments and computational modeling to investigate a hypothetical mechanism behind the observed behavior. First, we measured nuclear circularity in embryonic chick brains subjected to transverse compression. Immediately after loading, the circularity varied regionally and appeared to reflect the local state of stress in the wall. After three hours of culture with sustained compression, however, the nuclei became rounder. Exposure to a gap junction blocker inhibited this response, suggesting that it requires intercellular diffusion of a biochemical signal. We speculate that the signal regulates the contraction that occurs near the lumen, altering stress distributions and nuclear geometry throughout the wall. Simulating compression using a chemomechanical finite-element model based on this idea shows that our hypothesis is consistent with most of the experimental data. This work provides a foundation for future investigations of chemomechanical feedback in epithelia during embryonic development.

15.
Opt Lett ; 35(9): 1419-21, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20436589

RESUMO

A method is proposed to measure transverse blood flow by using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.


Assuntos
Hemorreologia , Óptica e Fotônica/métodos , Reologia/métodos , Ultrassonografia Doppler , Animais , Velocidade do Fluxo Sanguíneo , Bovinos/sangue , Embrião de Galinha/irrigação sanguínea , Orelha/irrigação sanguínea , Camundongos , Camundongos Endogâmicos , Fluxo Sanguíneo Regional
16.
J Biomech Eng ; 132(10): 104505, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20887023

RESUMO

The analysis of the biomechanics of growth and remodeling in soft tissues requires the formulation of specialized pseudoelastic constitutive relations. The nonlinear finite element analysis package ABAQUS allows the user to implement such specialized material responses through the coding of a user material subroutine called UMAT. However, hand coding UMAT subroutines is a challenge even for simple pseudoelastic materials and requires substantial time to debug and test the code. To resolve this issue, we develop an automatic UMAT code generation procedure for pseudoelastic materials using the symbolic mathematics package MATHEMATICA and extend the UMAT generator to include continuum growth. The performance of the automatically coded UMAT is tested by simulating the stress-stretch response of a material defined by a Fung-orthotropic strain energy function, subject to uniaxial stretching, equibiaxial stretching, and simple shear in ABAQUS. The MATHEMATICA UMAT generator is then extended to include continuum growth by adding a growth subroutine to the automatically generated UMAT. The MATHEMATICA UMAT generator correctly derives the variables required in the UMAT code, quickly providing a ready-to-use UMAT. In turn, the UMAT accurately simulates the pseudoelastic response. In order to test the growth UMAT, we simulate the growth-based bending of a bilayered bar with differing fiber directions in a nongrowing passive layer. The anisotropic passive layer, being topologically tied to the growing isotropic layer, causes the bending bar to twist laterally. The results of simulations demonstrate the validity of the automatically coded UMAT, used in both standardized tests of hyperelastic materials and for a biomechanical growth analysis.


Assuntos
Modelos Biológicos , Morfogênese/fisiologia , Anisotropia , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Software , Estresse Mecânico
17.
J Biomech Eng ; 132(1): 011005, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20524743

RESUMO

Mechanical forces play an important role during brain development. In the early embryo, the anterior end of the neural tube enlarges and differentiates into the major brain subdivisions, including three expanding vesicles (forebrain, midbrain, and hindbrain) separated by two constrictions. Once the anterior neuropore and the spinal neurocoel occlude, the brain tube undergoes further regional growth and expansion in response to increasing cerebrospinal fluid pressure. Although this is known to be a response to mechanical loads, the mechanical properties of the developing brain remain largely unknown. In this work, we measured regional opening angles (due to residual stress) and stiffness of the embryonic chick brain during Hamburger-Hamilton stages 11-13 (approximately 42-51 h incubation). Opening angles resulting from a radial cut on transverse brain slices were about 40-110 deg (depending on region and stage) and served as an indicator of circumferential residual stress. In addition, using a custom-made microindentation device and finite-element models, we determined regional indentation stiffness and material properties. The results indicate that the modulus is relatively independent of position and stage of development with the average shear modulus being about 220 Pa for stages 11-13 chick brains. Information on the regional material properties of the early embryonic brain will help illuminate the process of early brain morphogenesis.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Embrião de Galinha/anatomia & histologia , Embrião de Galinha/fisiologia , Modelos Neurológicos , Animais , Galinhas , Simulação por Computador , Módulo de Elasticidade/fisiologia , Estresse Mecânico
18.
J Biomech Eng ; 132(10): 101004, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20887014

RESUMO

Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence ("registration") between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an "error energy" term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.


Assuntos
Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Modelos Neurológicos , Algoritmos , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Engenharia Biomédica , Padronização Corporal/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Furões , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Modelos Anatômicos
19.
J Biomech Eng ; 132(7): 071013, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590291

RESUMO

During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerebral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism, and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are as follows: (1) Folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Axônios , Fenômenos Biomecânicos , Simulação por Computador , Furões , Masculino , Modelos Neurológicos , Fibras Nervosas Mielinizadas , Estresse Mecânico
20.
Biomech Model Mechanobiol ; 7(2): 77-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17318485

RESUMO

Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms.


Assuntos
Tecido Conjuntivo/crescimento & desenvolvimento , Citoesqueleto/fisiologia , Retroalimentação/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Simulação por Computador , Homeostase/fisiologia , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa