Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biol Pharm Bull ; 47(6): 1209-1217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925921

RESUMO

A major site for the absorption of orally administered drugs is the intestinal tract, where the mucosal epithelium functions as a barrier separating the inside body from the outer environment. The intercellular spaces between adjacent epithelial cells are sealed by bicellular and tricellular tight junctions (TJs). Although one strategy for enhancing intestinal drug absorption is to modulate these TJs, comprehensive gene (mRNA) expression analysis of the TJs components has never been fully carried out in humans. In this study, we used human biopsy samples of normal-appearing mucosa showing no endoscopically visible inflammation collected from the duodenum, jejunum, ileum, colon, and rectum to examine the mRNA expression profiles of TJ components, including occludin and tricellulin and members of the claudin family, zonula occludens family, junctional adhesion molecule (JAM) family, and angulin family. Levels of claudin-3, -4, -7, -8, and -23 expression became more elevated in each segment along the intestinal tract from the upper segments to the lower segments, as did levels of angulin-1 and -2 expression. In contrast, expression of claudin-2 and -15 was decreased in the large intestine compared to the small intestine. Levels of occludin, tricellulin, and JAM-B and -C expression were unchanged throughout the intestine. Considering their segment specificity, claudin-8, claudin-15, and angulin-2 appear to be targets for the development of permeation enhancers in the rectum, small intestine, and large intestine, respectively. These data on heterogenous expression profiles of intestinal TJ components will be useful for the development of safe and efficient intestinal permeation enhancers.


Assuntos
Claudinas , Mucosa Intestinal , Proteína 2 com Domínio MARVEL , Ocludina , Junções Íntimas , Humanos , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Proteína 2 com Domínio MARVEL/genética , Claudinas/genética , Claudinas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Expressão Gênica , Idoso
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338697

RESUMO

The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.


Assuntos
Doença de Alzheimer , Claudina-5 , Disfunção Cognitiva , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Biomarcadores , Barreira Hematoencefálica , Claudina-5/sangue , Claudina-5/química , Claudina-5/metabolismo , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/metabolismo , Células Endoteliais , Proteínas tau
3.
Biochem Biophys Res Commun ; 616: 140-144, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679696

RESUMO

Although modulation of claudin-1-based tight junction (TJ) in stratum granulosum is an option for transdermal absorption of drugs, granular permeation enhancers have never been developed. We previously found that homoharringtonine (HHT), a natural alkanoid, weakened intestinal epithelial barrier with changing expression and cellular localization of TJ components such as claudin-1 and claudin-4. In the present study, we investigated whether HHT is an epidermal granular permeation enhancer. Treatment of normal human epidermal keratinocytes (NHEK) cells with HHT decreased claudin-1 and claudin-4 but not zonula occludens-1 and E-cadherin. HHT lowered TJ-integrity in NHEK cells, accompanied by permeation-enhancement of dextran (4 kDa) in a dose-dependent manner. Transdermal treatment of mice with HHT weakened epidermal barrier. HHT treatment enhanced transdermal absorption of dextran with a molecular mass of up to 10 kDa. Together, HHT may be a transdermal absorption enhancer.


Assuntos
Dextranos , Mepesuccinato de Omacetaxina , Junções Íntimas , Animais , Claudina-1/metabolismo , Claudina-4/metabolismo , Dextranos/metabolismo , Mepesuccinato de Omacetaxina/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Junções Íntimas/metabolismo
4.
Int J Cosmet Sci ; 44(2): 189-200, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35244215

RESUMO

OBJECTIVE: The human epidermis is formed by the proliferation and differentiation of keratinocytes adjacent to the basement membrane. The outermost layer, the stratum corneum, is equipped with a barrier function that prevents water evaporation, and intercellular lipids play an important role in this barrier function. When the barrier is functioning normally, evaporation is prevented; however, when barrier function is impaired, moisture evaporates, resulting in dry and rough skin. Therefore, maintenance of normal barrier function is critical for maintaining normal skin function. Peroxisome proliferator-activated receptor α (PPARα) is mainly not only involved in lipid metabolism in the liver but is also expressed in the epidermis and is involved in inducing keratinocyte differentiation, promoting lipid production, maintaining barrier function and suppressing skin inflammation. Hence, compounds that activate PPARα are expected to control skin function. Therefore, we identified PPARα activators from among extracts of natural resources that have been approved for use in humans and analysed the effects of these extracts on skin function. METHODS: First, extracts of 474 natural resources were screened using a PPARα activator screening cell line independently constructed in our laboratory. Next, reporter assays were performed using the Gal4-chimera system to evaluate whether these extracts act as ligands for PPARα. We then analysed their effect on primary normal human epidermal keratinocyte cells by using real-time RT-PCR. Finally, we evaluated PPARα activation effect by the combination of these extracts. RESULTS: We identified 36 extracts having the effect of activating PPARα. In particular, #419, a Typha angustifolia spike extract, showed concentration-dependent transcriptional activation through PPARα-LBD and was considered to be likely to contain a compound that is a ligand of PPARα. #419 increased the expression of PPARα target genes and genes related to skin function in primary cultured human epidermal keratinocytes. Finally, the use of #419 in combination with nine extracts increased PPAR activity more than twice as much as #419 alone treatment. CONCLUSIONS: These results showed that the reporter cell line could be useful for discovering extracts of natural resources and that the identified Typha angustifolia spike extract could be used in cosmetics that activate PPARα, which expected to improve skin function.


OBJECTIF: L'épiderme humain se forme grâce à la prolifération et à la différenciation des kératinocytes adjacents à la membrane basale. La couche externe, dite « couche cornée ¼, possède une fonction barrière qui empêche l'évaporation de l'eau, dans laquelle les lipides intercellulaires jouent un rôle important. Lorsque la barrière fonctionne normalement, l'évaporation est évitée ; mais lorsqu'elle est altérée, l'évaporation a lieu et la peau, privée d'hydratation, devient sèche et rêche. Par conséquent, il est capital de maintenir cette fonction barrière normale pour que la peau conserve son fonctionnement normal. Le récepteur alpha activé par proliférateurs de peroxysomes (PPARα) intervient surtout non seulement dans le métabolisme lipidique du foie, mais également dans l'épiderme ; il joue en effet un rôle dans l'induction de la différenciation des kératinocytes, la promotion de la production lipidique, le maintien de la fonction barrière et la suppression de l'inflammation de l'épiderme. Par conséquent, les activateurs du PPAR-α devraient être déterminants pour une bonne fonction cutanée. Nous avons donc identifié des activateurs du PPAR-α parmi des extraits de ressources naturelles dont l'utilisation chez l'homme est approuvée, et nous avons analysé les effets de ces extraits sur la fonction cutanée. MÉTHODES: Tout d'abord, des extraits de 474 ressources naturelles ont été sélectionnés à l'aide d'une lignée cellulaire de détection des activateurs du PPAR-α, construite indépendamment dans notre laboratoire. Ensuite, des tests de gènes rapporteurs ont été effectués à l'aide du système Gal4-chimera pour voir si ces extraits jouaient le rôle de ligands pour le PPAR-α. Nous avons ensuite analysé leur effet sur les cellules kératinocytaires épidermiques humaines normales primaires par RT-PCR en temps réel. Enfin, nous avons évalué l'effet d'activation du PPAR-α par l'association de ces extraits. RÉSULTATS: Nous avons identifié 36 extraits ayant pour effet d'activer le PPAR-α. En particulier, le n° 419, un extrait d'épi de Typha angustifolia, a montré une activation transcriptionnelle dépendante de la concentration par le PPAR-α-LBD et a été considéré comme susceptible de contenir un composé qui est un ligand du PPAR-α. Le n° 419 a augmenté l'expression des gènes cibles du PPAR-α et des gènes liés au fonctionnement de la peau dans les kératinocytes épidermiques humains primaires mis en culture. Enfin, l'utilisation du n° 419 en association avec neuf extraits a augmenté de plus du double l'activité du PPAR par rapport au traitement par le n° 419 seul. CONCLUSIONS: Ces résultats ont montré que la lignée cellulaire rapporteuse pourrait être utile pour découvrir des extraits de ressources naturelles et que l'extrait d'épi de Typha angustifolia identifié pourrait être utilisé dans des cosmétiques qui activent le PPAR-α, ce qui devrait améliorer la fonction cutanée.


Assuntos
Cosméticos , PPAR alfa , Cosméticos/metabolismo , Cosméticos/farmacologia , Humanos , Queratinócitos , Ligantes , Extratos Vegetais , Pele/metabolismo
5.
Biol Pharm Bull ; 44(10): 1380-1390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602546

RESUMO

Claudin-5 is the dominant tight junction protein in brain endothelial cells and exclusively limits the paracellular permeability of molecules larger than 400 Da across the blood-brain barrier (BBB). Its pathological impairment or sustained down-regulation has been shown to lead to the progression of psychiatric and neurological disorders, whereas its expression under physiological conditions prevents the passage of drugs across the BBB. While claudin-5 enhancers could potentially act as vascular stabilizers to treat neurological diseases, claudin-5 inhibitors could function as delivery systems to enhance the brain uptake of hydrophilic small-molecular-weight drugs. Therefore, the effects of claudin-5 manipulation on modulating the BBB in different neurological diseases requires further examination. To manipulate claudin-5 expression levels and function, several claudin-5 modulating molecules have been developed. In this review, we first describe the molecular, cellular and pathological aspects of claudin-5 to highlight the mechanisms of claudin-5 enhancers/inhibitors. We then discuss recently developed claudin-5 enhancers/inhibitors and new methods to discover these molecules.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Claudina-5/agonistas , Claudina-5/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Descoberta de Drogas/métodos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Modelos Animais , Junções Íntimas/efeitos dos fármacos
6.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805378

RESUMO

Our group previously developed a series of bridged nucleic acids (BNAs), including locked nucleic acids (LNAs), amido-bridged nucleic acids (AmNAs), and guanidine-bridged nucleic acids (GuNAs), to impart specific characteristics to oligonucleotides such as high-affinity binding and enhanced enzymatic resistance. In this study, we designed a series of LNA-, AmNA-, and GuNA-modified splice-switching oligonucleotides (SSOs) with different lengths and content modifications. We measured the melting temperature (Tm) of each designed SSO to investigate its binding affinity for RNA strands. We also investigated whether the single-stranded SSOs formed secondary structures using UV melting analysis without complementary RNA. As a result, the AmNA-modified SSOs showed almost the same Tm values as the LNA-modified SSOs, with decreased secondary structure formation in the former. In contrast, the GuNA-modified SSOs showed slightly lower Tm values than the LNA-modified SSOs, with no inhibition of secondary structures. We also evaluated the exon skipping activities of the BNAs in vitro at both the mRNA and protein expression levels. We found that both AmNA-modified SSOs and GuNA-modified SSOs showed higher exon skipping activities than LNA-modified SSOs but each class must be appropriately designed in terms of length and modification content.


Assuntos
Distrofina/genética , Guanidina/química , Oligonucleotídeos/química , Oligonucleotídeos/genética , Linhagem Celular , Distrofina/metabolismo , Éxons , Marcação de Genes/métodos , Humanos , Ácidos Nucleicos/química , Oligonucleotídeos/síntese química , Splicing de RNA , Temperatura , Transfecção
7.
Pharm Res ; 37(7): 122, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514811

RESUMO

Dossiers on approved pharmaceutical products must be kept updated and current during the products' life cycles. The coalition, merger and acquisition along with corporate strategy that pursues efficiency and profitability of pharmaceutical companies have led to the globalization of supply chains for pharmaceutical ingredients and instruments in the post-marketing phase, and progress in manufacturing technologies can improve manufacturing processes during this phase. Regulatory requirements for post-marketing management of pharmaceutical products sometimes differ among countries around the world depending on national/regional policies or situations, even though the basic concepts of each regulation are the same. Therefore, an understanding of up-to-date region specific regulatory management frameworks is important for the optimal provision of pharmaceutical products by pharmaceutical industries. The amendment of the Japanese Pharmaceutical and Medical Device Act (Act No. 63 of 2019) was promulgated in December 2019, and will be enforced from September 2020 onwards. The amended Act sets out regulatory frameworks for post-marketing management systems, including inspection for good manufacturing practice of drugs, quasi-drugs, and gene-, cell-, and tissue-based products; and post-approval change-management protocols. Here, we review these new Japanese post-marketing management frameworks.


Assuntos
Indústria Farmacêutica , Equipamentos e Provisões , Órgãos Governamentais/legislação & jurisprudência , Marketing , Política de Saúde , Humanos , Japão , Farmácias/organização & administração , Gestão da Qualidade Total/organização & administração
8.
J Biol Chem ; 293(26): 10333-10343, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764933

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.


Assuntos
Regulação da Expressão Gênica , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Humanos , Hipolipemiantes/farmacologia , Ligantes , Ratos
9.
Biochem Biophys Res Commun ; 509(4): 886-891, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30642635

RESUMO

Lipin-1 has multiple functions that regulate lipid and energy metabolism according to its subcellular localization. The subcellular localization of Lipin-1 is determined by kinase-dependent phosphorylation; however, the phosphatase that dephosphorylates and inactivates Lipin-1 has remained elusive. Using an immunoprecipitation and LC-MS/MS approach we have identified phosphoglycerate mutase family member 5 (PGAM5), a serine/threonine specific protein phosphatase, as a regulator of Lipin-1 activity. Treatment of human hepatocellular carcinoma cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which activates endogenous PGAM5, promoted dephosphorylation and nuclear accumulation of Lipin-1. Our findings further elucidate the molecular mechanisms that regulate Lipin-1.


Assuntos
Proteínas Mitocondriais/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transporte Ativo do Núcleo Celular , Carcinoma Hepatocelular/metabolismo , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Fosforilação , Ligação Proteica , Células Tumorais Cultivadas
10.
J Pharmacol Exp Ther ; 368(2): 179-186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530622

RESUMO

Claudin (CLDN) proteins, a tetra-transmembrane family containing over 20 members, have been identified as key structural and functional components of intercellular seals, tight junctions (TJs). CLDNs are involved in the barrier and fence functions of TJs. Loosening the TJ barrier is one strategy for increasing drug absorption and delivery to the brain. Due to aberrant CLDN expression, the TJ fence function is frequently dysregulated in carcinogenesis. In addition, CLDN-1 is a co-receptor for the hepatitis C virus. Together these characteristics indicate CLDNs as promising targets for drug development, and CLDN binders are potential candidates for delivering drugs, treating cancer, and preventing viral infection. Before 2008, a receptor-binding fragment of Clostridium perfringens enterotoxin was the only CLDN binder available. Since then, several challenges regarding the generation of monoclonal antibodies against CLDNs have been surmounted, leading to breakthroughs in CLDN-targeted drug development. Here, we provide an overview of the recent progress in technology using created CLDN binders-anti-CLDN monoclonal antibodies.


Assuntos
Autoanticorpos/metabolismo , Claudinas/antagonistas & inibidores , Claudinas/metabolismo , Desenvolvimento de Medicamentos/tendências , Preparações Farmacêuticas/metabolismo , Sequência de Aminoácidos , Animais , Autoanticorpos/genética , Claudinas/genética , Humanos
11.
Bioorg Med Chem Lett ; 29(16): 2124-2128, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320147

RESUMO

We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity. These SAR results are somewhat different from those reported for fibrate-class hPPARα agonists. A representative compound (10f) was as effective as fenofibrate in reducing the elevated plasma triglyceride levels in a high-fructose-fed rat model.


Assuntos
PPAR alfa/agonistas , Piridinas/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
Chem Pharm Bull (Tokyo) ; 67(3): 199-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827999

RESUMO

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily and include three subtypes (PPARα, PPARδ, and PPARγ). They regulate gene expression in a ligand-dependent manner. PPARα plays an important role in lipid metabolism. PPARγ is involved in glucose metabolism and is a potential therapeutic target in Type 2 diabetes. PPARδ ligands are candidates for the treatment of metabolic disorders. Thus, the detection of PPAR ligands may facilitate the treatment of various diseases. In this study, to identify PPAR ligands, we engineered reporter cell lines that can be used to quantify PPARγ and PPARδ activity. We evaluated several known ligands using these reporter cell lines and confirmed that they are useful for PPAR ligand detection. Furthermore, we evaluated extracts of approximately 200 natural resources and found various extracts that enhance reporter gene activity. Finally, we identified a main alkaloid of the Evodia fruit, evodiamine, as a PPARγ activator using this screening tool. These results suggest that the established reporter cell lines may serve as a useful cell-based screening tool for finding PPAR ligands to ameliorate metabolic syndromes.


Assuntos
Síndrome Metabólica/prevenção & controle , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Linhagem Celular , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Síndrome Metabólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Extratos Vegetais/farmacologia
13.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426497

RESUMO

The tight junction (TJ) is an intercellular sealing component found in epithelial and endothelial tissues that regulates the passage of solutes across the paracellular space. Research examining the biology of TJs has revealed that they are complex biochemical structures constructed from a range of proteins including claudins, occludin, tricellulin, angulins and junctional adhesion molecules. The transient disruption of the barrier function of TJs to open the paracellular space is one means of enhancing mucosal and transdermal drug absorption and to deliver drugs across the blood-brain barrier. However, the disruption of TJs can also open the paracellular space to harmful xenobiotics and pathogens. To address this issue, the strategies targeting TJ proteins have been developed to loosen TJs in a size- or tissue-dependent manner rather than to disrupt them. As several TJ proteins are overexpressed in malignant tumors and in the inflamed intestinal tract, and are present in cells and epithelia conjoined with the mucosa-associated lymphoid immune tissue, these TJ-protein-targeted strategies may also provide platforms for the development of novel therapies and vaccines. Here, this paper reviews two TJ-protein-targeted technologies, claudin binders and an angulin binder, and their applications in drug development.


Assuntos
Desenvolvimento de Medicamentos , Proteínas de Junções Íntimas/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Animais , Claudinas/efeitos dos fármacos , Claudinas/metabolismo , Humanos , Ligação Proteica , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo
14.
Biochem Biophys Res Commun ; 488(1): 159-164, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28483528

RESUMO

Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes.


Assuntos
Fosfatidato Fosfatase/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Células Hep G2 , Humanos , Ubiquitinação
15.
Nucleic Acids Res ; 42(12): 8174-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935206

RESUMO

Antisense-mediated modulation of pre-mRNA splicing is an attractive therapeutic strategy for genetic diseases. Currently, there are few examples of modulation of pre-mRNA splicing using locked nucleic acid (LNA) antisense oligonucleotides, and, in particular, no systematic study has addressed the optimal design of LNA-based splice-switching oligonucleotides (LNA SSOs). Here, we designed a series of LNA SSOs complementary to the human dystrophin exon 58 sequence and evaluated their ability to induce exon skipping in vitro using reverse transcription-polymerase chain reaction. We demonstrated that the number of LNAs in the SSO sequence and the melting temperature of the SSOs play important roles in inducing exon skipping and seem to be key factors for designing efficient LNA SSOs. LNA SSO length was an important determinant of activity: a 13-mer with six LNA modifications had the highest efficacy, and a 7-mer was the minimal length required to induce exon skipping. Evaluation of exon skipping activity using mismatched LNA/DNA mixmers revealed that 9-mer LNA SSO allowed a better mismatch discrimination. LNA SSOs also induced exon skipping of endogenous human dystrophin in primary human skeletal muscle cells. Taken together, our findings indicate that LNA SSOs are powerful tools for modulating pre-mRNA splicing.


Assuntos
Oligonucleotídeos/química , Splicing de RNA , Adolescente , Pareamento Incorreto de Bases , Linhagem Celular , Células Cultivadas , Distrofina/genética , Éxons , Feminino , Humanos , Músculo Esquelético/metabolismo
16.
Biochem Biophys Res Commun ; 465(4): 725-31, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26296461

RESUMO

SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol.


Assuntos
Proteínas Metiltransferases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Histona-Lisina N-Metiltransferase , Humanos , Carioferinas/antagonistas & inibidores , Leupeptinas/farmacologia , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Metiltransferases/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Frações Subcelulares/metabolismo , Proteína Exportina 1
17.
Environ Res ; 140: 157-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25863188

RESUMO

Tetrabromobisphenol A (TeBBPA) is widely used type of brominated flame retardant. In this study, we newly synthesized materials for the debrominated congeners, 2,2',6-tribromobisphenol A (TriBBPA), 2,2'-dibromobisphenol A (2,2'-DiBBPA), 2,6-dibromobisphenol A (2,6-DiBBPA), and 2-monobromobisphenol A (MoBBPA) and evaluated the actual extent of contamination with bisphenol A (BPA), TeBBPA and debrominated congeners in Japanese breast milk samples. TriBBPA was detected at higher levels than that of TeBBPA, while DiBBPA and MoBBPA were detected at lower levels than that of TeBBPA. This observation suggested that humans are exposed to debrominated congeners, which might cause adverse effects. Contamination of the congeners in breast milk was concern about risk infant health, having vulnerable defense system. As pilot study by in vitro experiment, we assessed the toxic potency of debrominated congeners by studying their effect on adipocyte differentiation in 3T3-L1 cells. We observed 2,6-DiBBPA, TriBBPA and TeBBPA elevated the lipid accumulation and adipocyte-specific protein 2 expression in a manner dependent on the number of substituted bromines. Moreover, PPARγ transcriptional activities increased in a dose-dependent manner in the presence of 2,6-DiBBPA and TriBBPA as well as TeBBPA. Our study clarified that TeBBPA and its debrominated congeners accumulated in breast milk and the debrominated congeners promoted adipocyte differentiation, showing that a comprehensive evaluation of the influences of these compounds including the debrominated congeners of TeBBPA on health in infants is necessary.


Assuntos
Adipócitos/efeitos dos fármacos , Bromo/química , Diferenciação Celular/efeitos dos fármacos , Leite Humano/química , Bifenil Polibromatos/toxicidade , Células 3T3-L1 , Adulto , Animais , Sequência de Bases , Primers do DNA , Feminino , Células Hep G2 , Humanos , Japão , Camundongos , Bifenil Polibromatos/análise , Bifenil Polibromatos/química , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
18.
Ther Innov Regul Sci ; 57(1): 104-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994203

RESUMO

With the rapid technological innovations of the Internet of Things (IoT), the situation surrounding medical devices and medical systems has been changing. Interoperable medical devices-medical devices capable of interoperating in a clinically significant way with other medical devices-have been developed, and interoperable medical systems consisting of two or more interconnected interoperable medical devices are being used in clinical settings. However, general points that need to be considered to ensure safe and effective interoperability have yet to be fully established in Japan. A research project (FY2019-FY2021) to discuss issues associated with ensuring safe and effective interoperability was commissioned by the Japan Agency for Medical Research and Development. A pivotal aspect identified in that project is how to manage the sharing of data and information among interoperable medical devices from different manufacturers. Characteristics and timestamps of data and information need to be exchanged between interoperable medical devices. Risks associated with interoperable devices should be managed in a manner appropriate to the characteristics and the intended use of the interoperable medical devices. In this review, we summarize the aspects of data and information that this study group judged were important to consider for ensuring safety and effective interoperability.


Assuntos
População do Leste Asiático , Humanos , Japão
19.
Ann N Y Acad Sci ; 1514(1): 62-69, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508916

RESUMO

The blood-brain barrier is a major obstacle to the delivery of drugs to the central nervous system. In the blood-brain barrier, the spaces between adjacent brain microvascular endothelial cells are sealed by multiprotein complexes known as tight junctions. Among the many components of the tight junction, claudin-5 has received the most attention as a target for loosening the tight-junction seal and allowing drugs to be delivered to the brain. In mice, transient knockdown of claudin-5 and the use of claudin-5 binders have been shown to enhance the permeation of small molecules from the blood into the brain without apparent adverse effects. However, sustained knockdown of claudin-5 in mice is lethal within 40 days, and administration of an anti-claudin-5 antibody induced convulsions in a nonhuman primate. Here, we review the safety concerns of claudin-5-targeted technologies with respect to their clinical application.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Camundongos , Junções Íntimas/metabolismo
20.
Toxicol Lett ; 370: 1-6, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36100150

RESUMO

Exposure of humans to aflatoxin B1 (AFB1) via ingestion of contaminated agricultural products is a major concern for human health throughout the world because epoxidized AFB1, biotransformed from AFB1 by hepatic CYP3A4, is strongly hepatotoxic and hepatocarcinogenic. Intestinal epithelial cells serve as a physical and physiological barrier against xenobiotics via their intercellular tight junction (TJ) seals and the metabolizing enzyme CYP3A4. However, the effect of AFB1 on the intestinal barrier remains unclear. Here, we investigated the influence of AFB1 on these physical and physiological intestinal barriers by means of an in vitro human intestinal model utilizing doxycycline-inducible CYP3A4-expressing Caco-2 cells, in which CYP3A4 activity is comparable to that in the adult human intestine. Cellular toxicity of AFB1 in induced Caco-2 cells (i.e., cells in which expression of CYP3A4 is induced by doxycycline) was approximately 5 times that of uninduced Caco-2 cells. Exposure to 16 µM AFB1 did not decrease the transepithelial electric resistance (TEER; a measure of TJ barrier integrity) in monolayers of uninduced Caco-2 cells to 95.8 % of that in vehicle-treated cells; in contrast, in induced Caco-2 cells, TEER was reduced to 28.8 %. Exposure to 16 µM AFB1 increased paracellular permeation of 4- and 20-kDa dextrans (paracellular permeation markers) through monolayers of induced Caco-2 cells to 5.4 and 5.2 times that through uninduced Caco-2 cells. These results together show that ingested AFB1 can modulate the intestinal barrier, and that inducible CYP3A4-expressing Caco-2 cells are a promising tool for evaluating the safety of food contaminants in the human intestine.


Assuntos
Aflatoxina B1 , Citocromo P-450 CYP3A , Adulto , Aflatoxina B1/toxicidade , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Doxiciclina/farmacologia , Humanos , Intestinos , Junções Íntimas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa