RESUMO
Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, autosomal recessive neurodegenerative disorder caused by biallelic AAGGG/ACAGG repeat expansion (AAGGG-exp/ACAGG-exp) in RFC1. The recent identification of patients with CANVAS exhibiting compound heterozygosity for AAGGG-exp and truncating variants supports the loss-of-function of RFC1 in CANVAS patients. We investigated the pathological changes in 2 autopsied patients with CANVAS harboring biallelic ACAGG-exp and AAGGG-exp. RNA fluorescence in situ hybridization of the 2 patients revealed CCTGT- and CCCTT-containing RNA foci, respectively, in neuronal nuclei of tissues with neuronal loss. Our findings suggest that RNA toxicity may be involved in the pathogenesis of CANVAS. ANN NEUROL 2024;95:607-613.
Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Humanos , Ataxia Cerebelar/genética , Hibridização in Situ Fluorescente , RNA , SíndromeRESUMO
BACKGROUND: Despite the suggestion that direct compression by granuloma and ischemia resulting from vasculitis can cause nerve fiber damage, the mechanisms underlying sarcoid neuropathy have not yet been fully clarified. METHODS: We examined the clinicopathological features of sarcoid neuropathy by focusing on electrophysiological and histopathological findings of sural nerve biopsy specimens. We included 18 patients with sarcoid neuropathy who had non-caseating epithelioid cell granuloma in their sural nerve biopsy specimens. RESULTS: Although electrophysiological findings suggestive of axonal neuropathy were observed, particularly in the lower limbs, all but three patients showed ≥1 abnormalities in nerve conduction velocity or distal motor latency. Additionally, a conduction block was observed in 11 of the 16 patients for whom waveforms were assessed; five of them fulfilled motor nerve conduction criteria strongly supportive of demyelination as defined in the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) guideline for chronic inflammatory demyelinating polyneuropathy (CIDP). In most patients, sural nerve biopsy specimens revealed a mild to moderate degree of myelinated fiber loss. Fibrinoid necrosis was observed in one patient, and electron microscopy analysis revealed demyelinated axons close to granulomas in six patients. CONCLUSIONS: Patients with sarcoid neuropathy may meet the EAN/PNS electrophysiological criteria for CIDP due to the frequent presence of conduction blocks. Based on our results, in addition to the ischemic damage resulting from granulomatous inflammation, demyelination may play an important role in the mechanism underlying sarcoid neuropathy.
Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Vasculite , Humanos , Nervos Periféricos/patologia , Granuloma/patologia , Condução Nervosa/fisiologia , Vasculite/patologia , Nervo Sural/patologiaRESUMO
BACKGROUND: Pathogenic variants in Gap junction protein beta 1 (GJB1), which encodes Connexin 32, are known to cause X-linked Charcot-Marie-Tooth disease (CMTX), the second most common form of CMT. CMTX presents with the following five central nervous systems (CNS) phenotypes: subclinical electrophysiological abnormalities, mild fixed abnormalities on neurological examination and/or imaging, transient CNS dysfunction, cognitive impairment, and persistent CNS manifestations. CASE PRESENTATION: A 40-year-old Japanese male showed CNS symptoms, including nystagmus, prominent spastic paraplegia, and mild cerebellar ataxia, accompanied by subclinical peripheral neuropathy. Brain magnetic resonance imaging revealed hyperintensities in diffusion-weighted images of the white matter, particularly along the pyramidal tract, which had persisted since childhood. Nerve conduction assessment showed a mild decrease in motor conduction velocity, and auditory brainstem responses beyond wave II were absent. Peripheral and central conduction times in somatosensory evoked potentials elicited by stimulation of the median nerve were prolonged. Genetic analysis identified a hemizygous GJB1 variant, NM_000166.6:c.520C > T p.Pro174Ser. CONCLUSIONS: The patient in the case described here, with a GJB1 p.Pro174Ser variant, presented with a unique CNS-dominant phenotype, characterized by spastic paraplegia and persistent extensive leukoencephalopathy, rather than CMTX. Similar phenotypes have also been observed in patients with GJC2 and CLCN2 variants, likely because of the common function of these genes in regulating ion and water balance, which is essential for maintaining white matter function. CMTX should be considered within the spectrum of GJB1-related disorders, which can include patients with predominant CNS symptoms, some of which can potentially be classified as a new type of spastic paraplegia.
Assuntos
Conexinas , Proteína beta-1 de Junções Comunicantes , Leucoencefalopatias , Fenótipo , Paraplegia Espástica Hereditária , Humanos , Masculino , Adulto , Conexinas/genética , Leucoencefalopatias/genética , Leucoencefalopatias/fisiopatologia , Leucoencefalopatias/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Paraplegia Espástica Hereditária/diagnósticoRESUMO
We report two patients with autosomal dominant neuronal intranuclear inclusion disease (NIID) harboring the biallelic GGC repeat expansion in NOTCH2NLC to uncover the impact of repeat expansion zygosity on the clinical phenotype. The zygosity of the entire NOTCH2NLC GGC repeat expansion and DNA methylation were comprehensively evaluated using fluorescent amplicon length PCR (AL-PCR), Southern blotting and targeted long-read sequencing, and detailed genetic/epigenetic and clinical features were described. In AL-PCR, we could not recognize the wild-type allele in both patients. Targeted long-read sequencing revealed that one patient harbored a homozygous repeat expansion. The other patient harbored compound heterozygous repeat expansions. The GGC repeats and the nearest CpG island were hypomethylated in all expanded alleles in both patients. Both patients harboring the biallelic GGC repeat expansion showed a typical dementia-dominant NIID phenotype. In conclusion, the biallelic GGC repeat expansion in two typical NIID patients indicated that NOTCH2NLC-related diseases could be completely dominant.
Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Receptor Notch2/metabolismo , Humanos , Corpos de Inclusão Intranuclear/genética , Doenças Neurodegenerativas/genética , FenótipoRESUMO
Recently, a recessively inherited intronic repeat expansion in replication factor C1 (RFC1) was identified in cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Here, we describe a Japanese case of genetically confirmed CANVAS with autonomic failure and auditory hallucination. The case showed impaired uptake of iodine-123-metaiodobenzylguanidine and 123I-ioflupane in the cardiac sympathetic nerve and dopaminergic neurons, respectively, by single-photon emission computed tomography. Long-read sequencing identified biallelic pathogenic (AAGGG)n nucleotide repeat expansion in RFC1 and heterozygous benign (TAAAA)n and (TAGAA)n expansions in brain expressed, associated with NEDD4 (BEAN1). Enrichment of the repeat regions in RFC1 and BEAN1 using a Cas9-mediated system clearly distinguished between pathogenic and benign repeat expansions. The haplotype around RFC1 indicated that the (AAGGG)n expansion in our case was on the same ancestral allele as that of European cases. Thus, long-read sequencing facilitates precise genetic diagnosis of diseases with complex repeat structures and various expansions.
Assuntos
Vestibulopatia Bilateral/genética , Ataxia Cerebelar/genética , Expansão das Repetições de DNA , Proteína de Replicação C/genética , Análise de Sequência de DNA , Idoso de 80 Anos ou mais , Povo Asiático , Vestibulopatia Bilateral/diagnóstico , Ataxia Cerebelar/diagnóstico , Feminino , Humanos , Japão , Ubiquitina-Proteína Ligases Nedd4/genéticaRESUMO
Leukoencephalopathies comprise a broad spectrum of disorders, but the genetic background of adult leukoencephalopathies has rarely been assessed. In this study, we analyzed 101 Japanese patients with genetically unresolved adult leukoencephalopathy using whole-exome sequencing and repeat-primed polymerase chain reaction for detecting GGC expansion in NOTCH2NLC. NOTCH2NLC was recently identified as the cause of neuronal intranuclear inclusion disease. We found 12 patients with GGC expansion in NOTCH2NLC as the most frequent cause of adult leukoencephalopathy followed by NOTCH3 variants in our cohort. Furthermore, we found 1 case with de novo GGC expansion, which might explain the underlying pathogenesis of sporadic cases. ANN NEUROL 2019;86:962-968.
Assuntos
Variação Genética/genética , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Receptor Notch2/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144Gâ¯>â¯A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168Gâ¯>â¯A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11-20â¯weeks and showed Purkinje cell loss at 50â¯weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.
Assuntos
Canais de Cálcio Tipo T/metabolismo , Cerebelo/metabolismo , Fenótipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Canais de Cálcio Tipo T/genética , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologiaRESUMO
Mutations in the MATR3 gene have been identified as a cause of familial amyotrophic lateral sclerosis, but involvement of the matrin 3 (MATR3) protein in sporadic amyotrophic lateral sclerosis (SALS) pathology has not been fully assessed. We immunohistochemically analyzed MATR3 pathology in the spinal cords of SALS and control autopsy specimens. MATR3 immunostaining of the motor neuron nuclei revealed two distinct patterns: mild and strong staining. There were no differences in the ratio of mild versus strong nuclear staining between the SALS and control cases. MATR3-containing neuronal cytoplasmic inclusions (NCIs) were observed in 60% of SALS cases. Most motor neurons with MATR3-positive NCIs exhibited a mild nuclear staining pattern. Although 16.8% of NCIs positive for transactivating response region DNA-binding protein 43 (TDP-43) were estimated as double-labeled by MATR3, no MATR3-positive or TDP-43-negative NCIs were observed. Although a previous study found that MATR3-positive NCIs are present only in cases with C9orf72 hexanucleotide repeat expansion, ubiquitin-positive granular NCIs were not observed in the cerebellum, which have been reported as specific to C9orf72-related ALS. Six ALS cases were confirmed to be negative for the GGGGCC hexanucleotide. Our results reveal that MATR3 is a component of TDP-43-positive NCIs in motor neurons, even in SALS, and indicate the broader involvement of MATR3 in ALS pathology and the heterogeneity of TDP-43-positive NCIs.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Corpos de Inclusão/metabolismo , Neurônios Motores/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Corpos de Inclusão/patologia , Vértebras Lombares , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Medula Espinal/metabolismoRESUMO
BACKGROUND: Although inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases. Therefore, a new biomarker reflecting neuroinflammation is required for accurate diagnosis, appropriate therapy, and comprehension of pathogenesis of these neurological disorders. We previously reported that the cerebrospinal fluid (CSF) concentration of lateral olfactory tract usher substance (LOTUS), which promotes axonal growth as a Nogo receptor 1 antagonist, negatively correlates with disease activity in multiple sclerosis, suggesting that variation in LOTUS reflects the inflammatory activities and is a useful biomarker to evaluate the disease activity. To extend this observation, we analyzed the variation of LOTUS in the CSF of patients with bacterial and viral meningitis, which are the most common neuroinflammatory diseases. METHODS: CSF samples were retrospectively obtained from patients with meningitis (n = 40), who were followed up by CSF study at least twice, and from healthy controls (n = 27). Patients were divided into bacterial (n = 14) and viral meningitis (n = 18) after exclusion of eight patients according to the criteria of this study. LOTUS concentrations, total protein levels, and CSF cell counts in the acute and recovery phases were analyzed chronologically. We also used lipopolysaccharide-injected mice as a model of neuroinflammation to evaluate LOTUS mRNA and protein expression in the brain. RESULTS: Regardless of whether meningitis was viral or bacterial, LOTUS concentrations in the CSF of patients in acute phase were lower than those of healthy controls. As the patients recovered from meningitis, LOTUS levels in the CSF returned to the normal range. Lipopolysaccharide-injected mice also exhibited reduced LOTUS mRNA and protein expression in the brain. CONCLUSIONS: CSF levels of LOTUS correlated inversely with disease activity in both bacterial and viral meningitis, as well as in multiple sclerosis, because neuroinflammation downregulated LOTUS expression. Our data strongly suggest that variation of CSF LOTUS is associated with neuroinflammation and is useful as a biomarker for a broader range of neuroinflammatory diseases.
Assuntos
Proteínas de Ligação ao Cálcio/líquido cefalorraquidiano , Meningite/líquido cefalorraquidiano , Meningite/diagnóstico , Receptor Nogo 1/antagonistas & inibidores , Receptor Nogo 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
Autosomal recessive cerebellar ataxias (ARCAs) are clinically and genetically heterogeneous neurological disorders. Through whole-exome sequencing of Japanese ARCA patients, we identified three index patients from unrelated families who had biallelic mutations in ERCC4. ERCC4 mutations have been known to cause xeroderma pigmentosum complementation group F (XP-F), Cockayne syndrome, and Fanconi anemia phenotypes. All of the patients described here showed very slowly progressive cerebellar ataxia and cognitive decline with choreiform involuntary movement, with young adolescent or midlife onset. Brain MRI demonstrated atrophy that included the cerebellum and brainstem. Of note, cutaneous symptoms were very mild: there was normal to very mild pigmentation of exposed skin areas and/or an equivocal history of pathological sunburn. However, an unscheduled DNA synthesis assay of fibroblasts from the patient revealed impairment of nucleotide excision repair. A similar phenotype was very recently recognized through genetic analysis of Caucasian cerebellar ataxia patients. Our results confirm that biallelic ERCC4 mutations cause a cerebellar ataxia-dominant phenotype with mild cutaneous symptoms, possibly accounting for a high proportion of the genetic causes of ARCA in Japan, where XP-F is prevalent.
Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Proteínas de Ligação a DNA/genética , Genes Dominantes , Mutação , Fenótipo , Adulto , Idade de Início , Idoso , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , LinhagemRESUMO
Nogo-Nogo receptor 1 (NgR1) signaling is significantly implicated in neurodegeneration in amyotrophic lateral sclerosis (ALS). We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of NgR1 that prevents all myelin-associated inhibitors (MAIs), including Nogo, from binding to NgR1. Here we investigated the role of LOTUS in ALS pathogenesis by analyzing G93A-mutated human superoxide dismutase 1 (SOD1) transgenic (Tg) mice, as an ALS model, as well as newly generated LOTUS-overexpressing SOD1 Tg mice. We examined expression profiles of LOTUS and MAIs and compared motor functions and survival periods in these mice. We also investigated motor neuron survival, glial proliferation in the lumbar spinal cord, and neuromuscular junction (NMJ) morphology. We analyzed downstream molecules of NgR1 signaling such as ROCK2, LIMK1, cofilin, and ataxin-2, and also neurotrophins. In addition, we investigated LOTUS protein levels in the ventral horn of ALS patients. We found significantly decreased LOTUS expression in both SOD1 Tg mice and ALS patients. LOTUS overexpression in SOD1 Tg mice increased lifespan and improved motor function, in association with prevention of motor neuron loss, reduced gliosis, increased NMJ innervation, maintenance of cofilin phosphorylation dynamics, decreased levels of ataxin-2, and increased levels of brain-derived neurotrophic factor (BDNF). Reduced LOTUS expression may enhance neurodegeneration in SOD1 Tg mice and ALS patients by activating NgR1 signaling, and in this study LOTUS overexpression significantly ameliorated ALS pathogenesis. LOTUS might serve as a promising therapeutic target for ALS.
RESUMO
Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Ataxias Espinocerebelares , Ataxina-2/genética , Ataxina-2/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ativação Transcricional/genéticaRESUMO
Siponimod, which is approved to treat active secondary progressive multiple sclerosis, acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) and an agonist of S1P5. S1P1 antagonization, which inhibits lymphocyte egress from lymphoid tissues and subsequent infiltration into the central nervous system (CNS), is considered the main therapeutic mechanism of siponimod. In addition, siponimod's direct effects on CNS glial cells are another potential neuroprotective mechanism because siponimod can penetrate the blood-brain barrier and CNS glial cells express S1P receptors. However, it remains uncertain whether siponimod directly affects CNS glial cells. In this study, we investigated siponimod's effects on astrocytes using mouse primary cultures. Siponimod suppressed nuclear factor kappa B activation and pro-inflammatory cytokine production. Using antagonists for S1P1 and S1P5, we found that siponimod partially exerts its anti-inflammatory effects via S1P1, but not via S1P5. Moreover, siponimod also inhibited histone deacetylase, suggesting that siponimod exerts broad anti-inflammatory effects via S1P1 antagonization and histone deacetylase inhibition. Siponimod might suppress disease progression in multiple sclerosis in part via direct inhibition of astroglial CNS neuroinflammation.
Assuntos
Astrócitos , Esclerose Múltipla , Animais , Anti-Inflamatórios/farmacologia , Azetidinas , Compostos de Benzil , Citocinas , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico , Camundongos , Esclerose Múltipla/tratamento farmacológico , NF-kappa BRESUMO
In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a "dying back" manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A-CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.
RESUMO
A 39-year-old man exhibited ocular flutter and cerebellar ataxia following a subacute disturbance of consciousness and partial seizure. He was diagnosed with autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy by tissue- and cell-based antibody assays. Brain single-photon emission computed tomography detected a significant increase in blood flow in the fastigial nucleus, a critical region for eye saccade control. Immunotherapies diminished the ocular flutter and reduced hyperperfusion in the fastigial nucleus. This case suggests that autoimmune GFAP astrocytopathy can cause ocular flutter and provides strong imaging evidence supporting the hypothesis that ocular flutter is caused by hyperactivity or disinhibition of the fastigial nucleus.
Assuntos
Astrócitos , Filamentos Intermediários , Adulto , Proteína Glial Fibrilar Ácida , Humanos , MasculinoRESUMO
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522âAla) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.
Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismoRESUMO
Intracellular aggregates are a common pathological hallmark of neurodegenerative diseases such as polyglutamine (polyQ) diseases, amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple system atrophy (MSA). Aggregates are mainly formed by aberrant disease-specific proteins and are accompanied by accumulation of other aggregate-interacting proteins. Although aggregate-interacting proteins have been considered to modulate the formation of aggregates and to be involved in molecular mechanisms of disease progression, the components of aggregate-interacting proteins remain unknown. In this study, we showed that small glutamine-rich tetratricopeptide repeat-containing protein alfa (SGTA) is an aggregate-interacting protein in neurodegenerative diseases. Immunohistochemistry showed that SGTA interacted with intracellular aggregates in Huntington disease (HD) cell models and neurons of HD model mice. We also revealed that SGTA colocalized with intracellular aggregates in postmortem brains of patients with polyQ diseases including spinocerebellar ataxia (SCA)1, SCA2, SCA3, and dentatorubral-pallidoluysian atrophy. In addition, SGTA colocalized with glial cytoplasmic inclusions in the brains of MSA patients, whereas no accumulation of SGTA was observed in neurons of PD and ALS patients. In vitro study showed that SGTA bound to polyQ aggregates through its C-terminal domain and SGTA overexpression reduced intracellular aggregates. These results suggest that SGTA may play a role in the formation of aggregates and may act as potential modifier of molecular pathological mechanisms of polyQ diseases and MSA.
Assuntos
Química Encefálica , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Animais , Autopsia , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpos de Inclusão/química , Camundongos , Camundongos Transgênicos , Neuroblastoma , Doenças Neurodegenerativas/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Solubilidade , Frações Subcelulares/metabolismo , Transfecção , alfa-Sinucleína/análiseRESUMO
To investigate the prevalence and genotype-phenotype correlations of phosphatase and tensin homolog induced putative kinase 1 (PINK1) variants in Parkinson's disease (PD) patients, we analyzed 1700 patients (842 familial PD and 858 sporadic PD patients from Japanese origin). We screened the entire exon and exon-intron boundaries of PINK1 using Sanger sequencing and target sequencing by Ion torrent system. We identified 30 patients with heterozygous variants, 3 with homozygous variants, and 3 with digenic variants of PINK1-PRKN. Patients with homozygous variants presented a significantly younger age at onset than those with heterozygous variants. The allele frequency of heterozygous variants in patients with age at onset at 50 years and younger with familial PD and sporadic PD showed no differences. [123I]meta-iodobenzylguanidine (MIBG) myocardial scintigraphy indicated that half of patients harboring PINK1 heterozygous variants showed a decreased heart to mediastinum ratio (12/23). Our findings emphasize the importance of PINK1 variants for the onset of PD in patients with age at onset at 50 years and younger and the broad spectrum of clinical symptoms in patients with PINK1 variants.
Assuntos
Estudos de Associação Genética , Variação Genética/genética , Heterozigoto , Homozigoto , Doença de Parkinson/genética , Proteínas Quinases/genética , Fatores Etários , Idade de Início , Feminino , Frequência do Gene , Coração/diagnóstico por imagem , Humanos , Masculino , Mediastino/diagnóstico por imagem , Mediastino/patologia , Imagem de Perfusão do Miocárdio , Miocárdio/patologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/epidemiologia , Doença de Parkinson/patologiaRESUMO
Chronic tonsillitis has been attracted attention as a source of abnormal immune responses and a possible trigger of autoimmune diseases such as IgA nephritis, IgA vasculitis, palmoplantar pustulosis, psoriasis, rheumatoid arthritis, Behçet's disease, and myositis. Here we present the first report of anti-signal recognition particle antibody-associated necrotizing myopathy (anti-SRP myopathy) with IgA nephropathy and chronic tonsillitis in which the therapeutic response to intravenous immunoglobulin (IVIG) treatment was dramatically improved after tonsillectomy and accompanied by a rapid increase in ΔIgG, defined as the change in serum IgG levels 2 weeks after the start of IVIG treatment relative to pre-treatment levels. Moreover, serum anti-SRP antibody titers became undetectable after tonsillectomy even though the resected tonsils did not produce anti-SRP antibodies. Tonsillectomy should be considered when chronic tonsillitis is observed in patients with autoimmune diseases showing poor response to treatment, including anti-SRP myopathy.