Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 326(1): 169-76, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19059232

RESUMO

Extracts prepared from tissues containing buccal ring nerve or longitudinal radial nerve of sea cucumber induce oocyte maturation and ovulation from ovarian tissues. We purified two small peptides, a pentapeptide and a heptapeptide, from the buccal tissues of Japanese common sea cucumber, Apostichopus japonicas. Both peptides induced oocyte maturation and gamete spawning. The pentapeptide was identified as NGIWYamide. This peptide induced in vitro germinal vesicle breakdown and ovulation of fully-grown oocytes at less than 1 pM and in vivo spawning at 10 nM. A synthetic derivative of the pentapeptide, NGLWYamide, was 10-100 times more potent compared to the natural NGIWYamide. The heptapeptide was less potent, inducing ovulation at 1 muM. NGIWYamide and NGLWYamide induced a characteristic spawning behavior when injected into sexually matured individuals. Mature eggs artificially spawned were fertilized, and developed normally and metamorphosed into young sea cucumbers. The details of the production and the mechanism of action of NGIWYamide are still unclear, but the high biopotency of the peptide will aid understanding of the neuronal and hormonal control of reproduction of sea cucumber.


Assuntos
Células Germinativas/fisiologia , Neuropeptídeos/farmacologia , Oócitos/fisiologia , Oogênese/fisiologia , Stichopus/fisiologia , Animais , Feminino , Fertilização/efeitos dos fármacos , Fertilização/fisiologia , Células Germinativas/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos
3.
Front Biosci ; 13: 240-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981542

RESUMO

Our previous results that IFI16 is involved in p53 transcription activity under conditions of ionizing radiation (IR), and that the protein is frequently lost in human breast cancer cell lines and breast adenocarcinoma tissues suggesting that IFI16 plays a crucial role in controlling cell growth. Here, we show that loss of IFI16 by RNA interference in cell culture causes elevated phosphorylation of p53 Ser37 and accumulated NBS1 (nibrin) and p21WAF1, leading to growth retardation. Consistent with these observations, doxycyclin-induced NBS1 caused accumulation of p21WAF1 and increased phosphorylation of p53 Ser37, leading to cell cycle arrest in G1 phase. Wortmannin treatment was found to decrease p53 Ser37 phosphorylation in NBS-induced cells. These results suggest that loss of IFI16 activates p53 checkpoint through NBS1-DNA-PKcs pathway.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Genes p53 , Humanos , Fosforilação , Radiação Ionizante , Serina/química
4.
Int J Biol Sci ; 5(5): 444-50, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19564927

RESUMO

We have recently demonstrated that Aurora-A kinase is a potential oncogene to develop mammary gland tumors in mice, when expressed under MMTV promoter. These tumors contain phosphorylated forms of Akt and mTOR, suggesting that Akt-mTOR pathway is involved in transformed phenotype induced by Aurora-A. In the present studies, we discovered that stable cell lines expressing Aurora-A contain phosphorylation of Akt Ser473 after prolonged passages of cell culture, not in cells of the early period of cell culture. Levels of PTEN tumor suppressor are significantly reduced in these late passage cells at least in part due to increased poly ubiquitination of the protein. Akt-activated Aurora-A cells formed larger colonies in soft agar and are resistant to UV-induced apoptosis. Aurora-A inhibitor, VX-680, can cause cell death of Aurora-A cells in which Akt is not activated. siRNA-mediated depletion of mTOR in those cells resulted in decreased phosphorylation of Akt Ser473, suggesting that TORC2 complex phosphorylates Akt in Aurora-A cells. Treatment of late-passage Aurora-A cells with mTOR inhibitor reduced colony formation in soft agar. These results strongly suggest that commitment of cell transformation by Aurora-A is determined by at least co-activation of Akt/mTOR pathway.


Assuntos
Transformação Celular Neoplásica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aurora Quinase A , Aurora Quinases , Morte Celular , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias , Expressão Gênica , Humanos , Oncogenes , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa