Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Radiology ; 308(2): e230344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606571

RESUMO

CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.


Assuntos
Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Humanos , Tomografia Computadorizada Quadridimensional , Extremidade Inferior , Movimento (Física)
2.
J Comput Assist Tomogr ; 38(5): 773-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983435

RESUMO

OBJECTIVES: We validated a novel image-based motion estimation computed tomographic (CT) technique (iME) to quantify atrial regional function in swine in vivo. MATERIALS AND METHODS: Domestic swine (n = 8) underwent CT scan with intravenous contrast before and after median sternotomy where 15 to 30 glass beads were sutured to the atria to calculate the motion estimation error. Four-dimensional motion vector field was estimated using iME. Area change ratio (%AC) was calculated over the atrial endocardium to assess the surface deformation. RESULTS: The error between the measured and the calculated coordinates based on motion vector field was 0.76 ± 0.43 mm. The %AC was regionally heterogeneous. The %AC time course was significantly different between the right and the left atriums (P < 0.001) as well as between the right atrial appendage and the right atrial chamber (P = 0.004). CONCLUSIONS: Quantitative assessment of atrial regional function using iME is highly accurate. Image-based motion estimation computed tomographic (CT) technique can quantify subtle regional dysfunction that is not apparent in global functional indices such as ejection fraction.


Assuntos
Algoritmos , Função Atrial/fisiologia , Átrios do Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Movimento/fisiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fluxo Sanguíneo Regional/fisiologia , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Movimento (Física) , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
3.
Med Phys ; 51(1): 70-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011545

RESUMO

BACKGROUND: Photon counting detectors (PCDs) for x-ray computed tomography (CT) face spectral distortion from pulse pileup and charge sharing. The photon counting scheme used by many PCDs is threshold-subtract (TS) with pulse height analysis (PHA), where each counter counts up-crossing events when pulses exceed an energy threshold. PCD data are not Poisson-distributed due to charge sharing and pulse pileup, but the counting statistics have never been studied yet. PURPOSE: The objectives of this study were (1) to propose a modified photon counting scheme, direct energy binning (DB), that is expected to be robust against pulse pileup; (2) to assess the performance of DB compared to TS; and (3) to evaluate its counting statistics. METHODS: With DB scheme, counter k starts a timer upon an up-crossing event of energy threshold k, and adds a count only if the next higher energy threshold (k+1) was not crossed within a short time window (hence, the pulse peak belongs to the energy bin k). We used Monte Carlo (MC) simulation and assessed count-rate curves and count-rate-dependent spectral imaging task performance for conventional CT imaging as well as water thickness estimation, water-bone material decomposition, and K-edge imaging with tungsten as the K-edge material. We also assessed count-rate-dependent measurement statistics such as expectation, variance, and covariance of total counts as well as energy bin outputs. The agreement with counting statistics models was also evaluated. RESULTS: The DB scheme improved the count-rate curve, that is, mean measured counts as a function of input count-rate, and peaked with 59% higher count-rate capability than the TS scheme (3.5 × 108 counts per second (cps)/mm2 versus 2.3 × 108  cps/mm2 ). The Cramér-Rao lower bounds (CRLB) of the variance of basis line integrals estimation for DB was better than those for TS by 2% for the conventional CT imaging, 30% for water-bone material decomposition, and 32% for K-edge imaging at 1000 mA (at 7.3 × 107  cps/sub-pixel after charge sharing). When count-rates were lower, PCD data statistics were dominated by charge sharing: the variance of total counts and lower energy bins was larger than the mean counts; the covariance of bin data was positive and non-zero. When count-rates were higher, PCD data statistics were dominated by pulse pileup: the variance of data was lower than the mean; the covariance of bin data was negative. The transition between the two regimes occurred smoothly, and pulse pileup dominated the statistics ≥400 mA (when the count-rate after charge sharing was 2.9 × 107  cps/sub-pixel and the probability of count-loss for DB was 37%). Both DB and TS had good agreement with Yu-Fessler's models of total counts; however, DB had a better agreement with Wang's variance and covariance models for energy bin data than TS did. CONCLUSIONS: The proposed DB scheme had several advantages over TS. At low to moderate flux, DB could improve the resilience of PCDs to pulse pileup. Counting statistics deviated from the Poisson distribution due to charge sharing for lower count-rate conditions and pulse pileup for higher count-rate conditions.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Método de Monte Carlo , Água
4.
Med Phys ; 51(4): 2386-2397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353409

RESUMO

BACKGROUND: Silicon (Si) is a possible sensor material for photon counting detectors (PCDs). A major drawback of Si is that roughly two-thirds of x-ray interactions in the diagnostic energy range are Compton scattering. Because Compton scattering is an energy-insensitive process, it is commonly assumed that Compton events retain little spectral information. PURPOSE: To quantify how much information can be recovered from Compton scattering events in models of Si PCDs. METHODS: We built a simplified model of Si interactions including two interaction mechanisms: photoelectric effect and Compton scattering. We considered three different binning options that represent strategies for handling Compton events: in Compton censoring, all events under 38 keV (the maximum energy possible from Compton scattering for a 120 keV incident photon) were discarded; in Compton counting, all events between 1 and 38 keV were placed into a single bin; in Compton binning, all events were placed into energy bins of uniform width. These were compared to the ideal detector, which always recorded the correct energy (i.e., 100% photoelectric effect). Every photon was assumed to interact once and only once with Si, and the energy bin width was 5 keV. In the primary analysis, the Si detector was irradiated with a 120 kV spectrum filtered by 30 cm of water, with 99.5% of the arriving spectrum above 38 keV so that there was good separation between photoelectric effect and Compton scattering, and the figures of merit were the Cramér-Rao lower bound (CRLB) of the variance of iodine and water basis material decomposition images, as well as the CRLB of virtual monoenergetic images (i.e., linear combinations of material images) that maximize iodine CNR or water CNR. We also constructed a local linear estimator that attains the CRLB. In secondary analyses, we applied other sources of spectral distortion: (1) a nonzero minimum energy threshold; (2) coarser, 10 keV energy bins; and (3) a model of charge sharing. RESULTS: With our chosen spectrum, 67% of the interactions were Compton scattering. Consistent with this, the material decomposition variance for the Compton censoring model, averaged over both basis materials, was 258% greater than the ideal detector. If Compton events carried no spectral information, the Compton counting model would show similar variance. Instead, its basis material variance was 103% greater than the ideal detector, implying that Compton counts indeed carry significant spectral information. The Compton binning model had a basis material variance 60% greater than the ideal detector. The Compton binning model was not affected by a 5 keV minimum energy threshold, but the variance increased from 60% to 107% when charge sharing was included and to 78% with coarser energy bins. For optimized CNR images, the average variance was 149%, 12%, and 10% higher than the ideal detector for the Compton censoring, counting, and binning models, reinforcing the hypothesis that Compton counts are useful for detection tasks and that precise energy assignments are not necessary. CONCLUSIONS: Substantial spectral information remains after Compton scattering events in silicon PCDs.


Assuntos
Iodo , Silício , Radiografia , Raios X , Fótons , Água
5.
Med Phys ; 51(2): 964-977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064641

RESUMO

BACKGROUND: An energy-discriminating capability of a photon counting detector (PCD) can provide many clinical advantages, but several factors, such as charge sharing (CS) and pulse pileup (PP), degrade the capability by distorting the measured x-ray spectrum. To fully exploit the merits of PCDs, it is important to characterize the output of PCDs. Previously proposed PCD output models showed decent agreement with physical PCDs; however, there were still scopes to be improved: a global model-data mismatch and pixel-to-pixel variations. PURPOSES: In this study, we improve a PCD model by using count-rate-dependent model parameters to address the issues and evaluate agreement against physical PCDs. METHODS: The proposed model is based on the cascaded model, and we made model parameters condition-dependent and pixel-specific to deal with the global model-data mismatch and the pixel-to-pixel variation. The parameters are determined by a procedure for model parameter estimation with data acquired from different thicknesses of water or aluminum at different x-ray tube currents. To analyze the effects of having proposed model parameters, we compared three setups of our model: a model with default parameters, a model with global parameters, and a model with global-and-local parameters. For experimental validation, we used CdZnTe-based PCDs, and assessed the performance of the models by calculating the mean absolute percentage errors (MAPEs) between the model outputs and the actual measurements from low count-rates to high count-rates, which have deadtime losses of up to 24%. RESULTS: The outputs of the proposed model visually matched well with the PCD measurements for all test data. For the test data, the MAPEs averaged over all the bins were 49.2-51.1% for a model with default parameters, 8.0-9.8% for a model with the global parameters, and 1.2-2.7% for a model with the global-and-local parameters. CONCLUSION: The proposed model can estimate the outputs of physical PCDs with high accuracy from low to high count-rates. We expect that our model will be actively utilized in applications where the pixel-by-pixel accuracy of a PCD model is important.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Raios X
6.
PLoS One ; 18(6): e0270387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289737

RESUMO

We present an upgraded version of the Photon Counting Toolkit (PcTK), a freely available by request MATLAB tool for the simulation of semiconductor-based photon counting detectors (PCD), which has been extended and validated to account for gallium arsenide (GaAs)-based PCD(s). The modified PcTK version was validated by performing simulations and acquiring experimental data for three different cases. The LAMBDA 60 K module planar detector (X-Spectrum GmbH, Germany) based on the Medipix3 ASIC technology was used in all cases. This detector has a 500-µm thick GaAs sensor and a 256 × 256-pixel array with 55 µm pixel size. The first validation was a comparison between simulated and measured spectra from a 109Cd radionuclide source. In the second validation study, experimental measurements and simulations of mammography spectra were generated to observe the performance of the GaAs version of the PcTK with polychromatic radiation used in conventional x-ray imaging systems. The third validation study used single event analysis to validate the spatio-energetic model of the extended PcTK version. Overall, the software provided a good agreement between simulated and experimental data, validating the accuracy of the GaAs model. The software could be an attractive tool for accurate simulation of breast imaging modalities relying on photon counting detectors and therefore could assist in their characterization and optimization.


Assuntos
Arsenicais , Software , Radioisótopos de Cádmio , Fótons
7.
J Med Imaging (Bellingham) ; 10(Suppl 2): S22406, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37056579

RESUMO

Purpose: Most photon-counting detectors (PCDs) being developed use cadmium telluride (CdTe), which has nonoptimal characteristic x-ray emission with energies in the range used for breast imaging. New PCD using a gallium arsenide (GaAs) has been developed. Since GaAs has characteristic x-rays lower in energy than those of CdTe, it is hypothesized that this new PCD might be beneficial for spectral x-ray breast imaging. Approach: We performed simulations using realistic mammography x-ray spectra with both CdTe and GaAs PCDs. Five different experiments were conducted, each comparing the performance of CdTe and GaAs: (1) sensitivity of iodine quantification to charge cloud size and electronic noise, (2) effect of photon spectrum on iodine quantification, (3) effect of varying the number of energy bins, (4) a dose analysis to assess any possible dose reduction from using either detector, and (5) spectral performance of ideal CdTe and GaAs PCDs. For each study, 3 sets of 5000 noise realizations were used to calculate the Cramer-Rao lower bound (CRLB) of iodine quantification. Results: For all spectra studied, GaAs gave a lower CRLB for iodine quantification, with 10 of the 12 spectra showing a statistically significant difference ( p ≤ 0.05 ). The photon energy spectrum that optimized iodine detection for both detector materials was the 40 kVp beam with 2-mm Al filtration, which produced CRLBs of 0.282 cm 2 and 0.257 cm 2 for CdTe and GaAs, respectively, when using five energy bins. Conclusion: GaAs is a promising detector material for contrast-enhanced spectral mammography that offers better spectral performance than CdTe.

8.
Radiology ; 264(2): 567-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22692035

RESUMO

This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.


Assuntos
Doses de Radiação , Proteção Radiológica/métodos , Tomógrafos Computadorizados/tendências , Tomografia Computadorizada por Raios X/tendências , Fatores Etários , Algoritmos , Feminino , Humanos , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fatores de Risco , Fatores Sexuais
9.
Med Phys ; 39(7): 4291-305, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830763

RESUMO

PURPOSE: To develop a new fully four-dimensional (4D), iterative image reconstruction algorithm for cardiac CT that alternates the following two methods: estimation of a time-dependent motion vector field (MVF) of the heart from image data and reconstruction of images using the estimated MVF and projection data. METHODS: Volumetric image data at different cardiac phase points were obtained using electrocardiogram-gated CT. Motion estimation (ME) and motion-compensated image reconstruction (MCR) were performed alternately until convergence was achieved. The ME method estimated the cardiac MVF using 4D nonrigid image registration between a cardiac reference phase and all the other phases. The nonrigid deformation of the heart was modeled using cubic B-splines. The cost function consisted of a sum of squared weighted differences and spatial and temporal regularization terms. A nested conjugate gradient optimization algorithm was applied to minimize the cost function and estimate the MVFs. Cardiac images were reconstructed using a motion-tracking algorithm that utilized the MVFs estimated by the ME method. The reconstructed images supplied the input to the ME of the next iteration. The performance of the proposed method was evaluated using four patient data sets acquired with a 64-slice CT scanner. The heart rates of the patients ranged from 52 to 71 beats/min. RESULTS: Motion artifacts were significantly reduced, and the image quality increased with the number of iterations. Without MCR, the right coronary artery (RCA) was deformed into an arc in axial images of rapid phases. With the proposed method the RCA appeared sharper and was reconstructed similar in shape to the reconstruction at the quiescent phase at mid-diastole. The boundary between the interventricular septum and the right ventricle was also clearer and sharper using the proposed algorithm. The steepness of the transition range at a rapid phase (35% R-R) was increased from 6.8 HU∕pixel to 11.5 HU∕pixel. The ME-MCR algorithm converged in just four iterations. CONCLUSION: We developed a fully 4D image reconstruction method that alternates ME and MCR algorithms in an iterative fashion. Performance tests using clinical patient data resulted in reduced motion artifacts.


Assuntos
Artefatos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Angiografia Coronária/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Movimento (Física) , Imagem de Perfusão do Miocárdio/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
10.
AJR Am J Roentgenol ; 198(6): 1380-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623552

RESUMO

OBJECTIVE: The aim of this in vitro study was to examine the capability of three protocols of dual-energy CT imaging in distinguishing calcium oxalate, calcium phosphate, and uric acid kidney stones. MATERIALS AND METHODS: A total of 48 calcium oxalate, calcium phosphate, and uric acid human kidney stone samples were placed in individual containers inside a cylindric water phantom and imaged with a dual-energy CT scanner using the following three scanning protocols of different combinations of tube voltage, with and without a tin filter: 80 and 140 kVp without a tin filter, 100 and 140 kVp with a tin filter, and 80 and 140 kVp with a tin filter. The mean attenuation value (in Hounsfield units) of each stone was recorded in both low- and high-energy CT images in each protocol. The dual-energy ratio of the mean attenuation values of each stone was computed for each protocol. RESULTS: For all three protocols, the uric acid stones were significantly different (p < 0.001) from the calciferous stones according to their dual-energy ratio values. For differentiating calcium oxalate and calcium phosphate stones, the difference between their dual-energy ratio values was statistically significant, with different degrees of significance (range, p < 0.001 to p = 0.03) for all three protocols. On the basis of the values of the area under receiver operating characteristic curve (AUC) of calcified stone differentiation, the three protocols were ranked in the following order: the 80- and 140-kVp tin filter protocol (AUC, 0.996), the 100- and 140-kVp tin filter protocol (AUC, 0.918), and the 80- and 140-kVp protocol (AUC, 0.871). CONCLUSION: The tin filter added to the high-energy tube and the use of a wider dual-energy difference are important for improving the stone differentiation capability of dual-energy CT imaging.


Assuntos
Cálculos Renais/química , Cálculos Renais/diagnóstico por imagem , Estanho , Tomografia Computadorizada por Raios X/instrumentação , Análise de Variância , Oxalato de Cálcio/análise , Fosfatos de Cálcio/análise , Humanos , Técnicas In Vitro , Imagens de Fantasmas , Curva ROC , Ácido Úrico/análise
11.
Med Phys ; 49(8): 5038-5051, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35722721

RESUMO

PURPOSE: We aim at developing a model-based algorithm that compensates for the effect of both pulse pileup (PP) and charge sharing (CS) and evaluates the performance using computer simulations. METHODS: The proposed PCP algorithm for PP and CS compensation uses cascaded models for CS and PP we previously developed, maximizes Poisson log-likelihood, and uses an efficient three-step exhaustive search. For comparison, we also developed an LCP algorithm that combines models for a loss of counts (LCs) and CS. Two types of computer simulations, slab- and computed tomography (CT)-based, were performed to assess the performance of both PCP and LCP with 200 and 800 mA, (300 µm)2  × 1.6-mm cadmium telluride detector, and a dead-time of 23 ns. A slab-based assessment used a pair of adipose and iodine with different thicknesses, attenuated X-rays, and assessed the bias and noise of the outputs from one detector pixel; a CT-based assessment simulated a chest/cardiac scan and a head-and-neck scan using 3D phantom and noisy cone-beam projections. RESULTS: With the slab simulation, the PCP had little or no biases when the expected counts were sufficiently large, even though a probability of count loss (PCL) due to dead-time loss or PP was as high as 0.8. In contrast, the LCP had significant biases (>±2 cm of adipose) when the PCL was higher than 0.15. Biases were present with both PCP and LCP when the expected counts were less than 10-120 per datum, which was attributed to the fact that the maximum likelihood did not approach the asymptote. The noise of PCP was within 8% from the Cramér-Rao lower bounds for most cases when no significant bias was present. The two CT studies essentially agreed with the slab simulation study. PCP had little or no biases in the estimated basis line integrals, reconstructed basis density maps, and synthesized monoenergetic CT images. But the LCP had significant biases in basis line integrals when X-ray beams passed through lungs and near the body and neck contours, where the PCLs were above 0.15. As a consequence, basis density maps and monoenergetic CT images obtained by LCP had biases throughout the imaged space. CONCLUSION: We have developed the PCP algorithm that uses the PP-CS model. When the expected counts are more than 10-120 per datum, the PCP algorithm is statistically efficient and successfully compensates for the effect of the spectral distortion due to both PP and CS providing little or no biases in basis line integrals, basis density maps, and monoenergetic CT images regardless of count-rates. In contrast, the LCP algorithm, which models an LC due to pileup, produces severe biases when incident count-rates are high and the PCL is 0.15 or higher.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Simulação por Computador , Imagens de Fantasmas , Radiografia , Tomografia Computadorizada por Raios X/métodos
12.
Med Phys ; 38(3): 1307-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520842

RESUMO

PURPOSE: To develop a method to reconstruct an interior region-of-interest (ROI) image with sufficient accuracy that uses differentiated backprojection (DBP) projection onto convex sets (POCS) [H. Kudo et al., "Tiny a priori knowledge solves the interior problem in computed tomography," Phys. Med. Biol. 53, 2207-2231 (2008)] and a tiny knowledge that there exists a nearly piecewise constant subregion. METHODS: The proposed method first employs filtered backprojection to reconstruct an image on which a tiny region P with a small variation in the pixel values is identified inside the ROI. Total variation minimization [H. Yu and G. Wang, "Compressed sensing based interior tomography," Phys. Med. Biol. 54, 2791-2805 (2009); W. Han et al., "A general total variation minimization theorem for compressed sensing based interior tomography," Int. J. Biomed. Imaging 2009, Article 125871 (2009)] is then employed to obtain pixel values in the subregion P, which serve as a priori knowledge in the next step. Finally, DBP-POCS is performed to reconstruct f(x,y) inside the ROI. Clinical data and the reconstructed image obtained by an x-ray computed tomography system (SOMATOM Definition; Siemens Healthcare) were used to validate the proposed method. The detector covers an object with a diameter of approximately 500 mm. The projection data were truncated either moderately to limit the detector coverage to Ø 350 mm of the object or severely to cover Ø199 mm. Images were reconstructed using the proposed method. RESULTS: The proposed method provided ROI images with correct pixel values in all areas except near the edge of the ROI. The coefficient of variation, i.e., the root mean square error divided by the mean pixel values, was less than 2.0% or 4.5% with the moderate or severe truncation cases, respectively, except near the boundary of the ROI. CONCLUSIONS: The proposed method allows for reconstructing interior ROI images with sufficient accuracy with a tiny knowledge that there exists a nearly piecewise constant subregion.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
13.
Med Phys ; 38(3): 1534-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520865

RESUMO

PURPOSE: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. METHODS: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. RESULTS: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D space (for contrast agents using energy resolved photon-counting acquisition and all materials using dual-kVp acquisition) as a measure of the degree of separation. Compared to dual-kVp techniques, an energy resolved detector provided a larger separation and the ability to separate different target materials using measurements acquired in different energy window pairs with a single x-ray exposure. CONCLUSIONS: We concluded that x-ray CT with an energy resolved photon-counting detector with more than two energy windows allows the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. Separating material types using energy resolved photon-counting detectors has a number of advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.


Assuntos
Fótons , Tomografia Computadorizada por Raios X/instrumentação , Absorção , Animais , Modelos Lineares , Camundongos , Imagens de Fantasmas , Microtomografia por Raio-X
14.
Med Phys ; 38(2): 1089-102, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452746

RESUMO

PURPOSE: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a "pulse pileup event" and results in both a loss of counts (called "deadtime losses") and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. METHODS: An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 microA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime tau, a coefficient k that relates the x-ray tube current I to an incident count rate a by a = k x I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the distorted recorded spectrum. The agreement between data measured by the DXMCT-1 and those predicted by the models was quantified by the coefficient of variation (COV), i.e., the root mean square difference divided by the mean of the measurement. RESULTS: Photon energy versus pulse height curves calculated with an analytical model and those measured using the DXMCT-1 were in agreement within 0.2% in terms of the COV. The COV between the output count rates measured and those predicted by analytical models was 2.5% for deadtime losses of up to 60%. The COVs between spectra measured and those predicted by the detector model were within 3.7%-7.2% with deadtime losses of 19%-46%. CONCLUSIONS: It has been demonstrated that the performance of the DXMCT-1 agreed exceptionally well with the analytical models regarding the energy response, the count rate, and the recorded spectrum with pulse pileup effects. These models will be useful in developing methods to compensate for these effects in PCXD-based clinical CT systems.


Assuntos
Modelos Teóricos , Fótons , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes
15.
J Comput Assist Tomogr ; 35(4): 480-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765305

RESUMO

We compare the performance of low tube voltage with the hybrid iterative reconstruction (iDose) with standard and low tube voltage with the filtered backprojection (FBP) using phantoms at computed tomographic coronary angiography. In computed tomographic coronary angiography, application of the combined low tube voltage with iDose resulted in significant image quality improvements compared to the low tube voltage with FBP. Image quality was the same or better despite a reduction in the radiation dose by 76% compared with standard tube voltage with FBP.


Assuntos
Algoritmos , Angiografia Coronária/métodos , Doença das Coronárias/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Eletrocardiografia , Humanos , Imagens de Fantasmas , Doses de Radiação
16.
Minim Invasive Ther Allied Technol ; 20(5): 276-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21082901

RESUMO

C-arm cone-beam computed tomography (CBCT) can be used to visualize tumor-feeding vessels and parenchymal staining during transcatheter arterial chemoembolization (TACE). To capture these two phases, all current commercially available CBCT systems necessitate two separate contrast-enhanced scans. In this feasibility study, we report initial results of novel software that enhanced our current CBCT system to capture these two phases using only one contrast injection. Novelty of this work is the addition of software that enabled the acquisition of two sequential, back-to-back CBCT scans (dual-phase CBCT, DPCBCT) so both tumor feeding vessels and parenchyma are captured using only one contrast injection. To illustrate our initial experience, DPCBCT was used for TACE treatments involving lipiodol, drug-eluting beads, and Yttrium-90 radioembolizing microspheres. For each case, the DPCBCT images were compared to pre-intervention contrast-enhanced MR/CT. DPCBCT is feasible for TACE treatments and the preliminary results show positive correlation with pre-intervention conventional CT and MR. In addition, the degree of embolization can be monitored. DPCBCT is a promising technology that provides comprehensive visualization of tumor-feeding vessels and parenchymal staining using a single injection of contrast. DPCBCT could potentially be used during TACE to verify catheter position and monitor the embolization effect.


Assuntos
Quimioembolização Terapêutica/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Hepáticas/terapia , Idoso , Animais , Meios de Contraste/administração & dosagem , Óleo Etiodado/administração & dosagem , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Neoplasias Hepáticas/irrigação sanguínea , Masculino , Microesferas , Pessoa de Meia-Idade , Suínos , Radioisótopos de Ítrio/administração & dosagem
17.
IEEE Trans Radiat Plasma Med Sci ; 5(4): 465-475, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34250325

RESUMO

Recently, multi-energy inter-pixel coincidence counter (MEICC) has been proposed for charge sharing correction and compensation for photon counting detectors (PCDs), which uses energy-dependent coincidence counters to record coincident events between multiple energy windows of a pixel-of-interest and those of neighboring pixels. A Monte Carlo (MC) simulation study was performed to assess the performance of MEICC; however, the performance might have been overestimated in a previous study. The charge sharing increases the number of photons recorded at a PCD pixel at the expense of the spatial resolution, and therefore, when spatially uniform flat-field x-ray signals are used, it gives PCDs with charge sharing more signals than a PCD without charge sharing. In this paper, we propose to use spatially modulated boxcar signals for evaluating the performances for high spatial frequency tasks because they provide consistent signals regardless of the presence of absence of charge sharing. The flat-field signals must be used for low spatial frequency tasks. We assessed the performances of MEICC and other PCDs with both flat-field signals and boxcar signals, with optimal threshold energies, and with two different pixel sizes. As it is expected, normalized Cramér-Rao lower bounds (nCRLBs) measured with the boxcar signals were worse than those with flat-field signals in general. The nCRLBs of MEICC with 225-µm pixel were close to the current 450-µm PCD. We studied a combination of flat-field signals and N×N super-pixels, where the output of N×N pixels were added, using an MC simulation and a simple charge sharing counting model. The study showed that charge sharing had two opposing impacts on the conventional CT imaging-a negative impact with double-counting among N×N pixels and a positive impact with single-counting spill-in and spill-out across the super-pixel boundary-and the positive impact diminished with increasing N. A use of large N×N super-pixels such as N≥25 was suggested to approximate the zero-frequency detection quantum efficiency of PCD with charge sharing.

18.
Med Phys ; 48(9): 4909-4925, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287966

RESUMO

PURPOSE: Spectral distortion due to charge sharing (CS) and pulse pileup (PP) in photon-counting detectors (PCDs) degrades the quality of PCD data. We recently proposed multi-energy inter-pixel coincidence counters (MEICC) that provided spectral cross-talk information related to CS. When PP was absent, the normalized Cramér-Rao lower bounds (nCRLBs) of 225-µm pixel PCDs with MEICC was comparable to those of 450-µm pixel PCD without MEICC. The aim of this study was to assess the performance of PCDs with MEICC in the presence of both CS and PP using computer simulations. METHODS: An in-house Monte Carlo program was modified to incorporate the following four temporal elements: (1) A pulse shape with a pulse duration of 20 ns, (2) delays of up to 10 ns in anode arrival times when photons were incident on pixel boundaries, (3) offsets proportional to a vertical separation between the primary and secondary charge clouds at the rate of ±4 ns per ±100 µm, and (4) a stochastic fluctuation of anode arrival times for all of the charge clouds with a standard deviation of 2 ns. We assessed the performance of five PCDs, (a)-(f), for three spectral tasks, (A)-(C): (a) The conventional PCD, (b) a PCD with MEICC, (c) a PCD with one coincidence counter (1CC), (d) a PCD with a 3 × 3 analog charge summing scheme (ACS), and (e) a PCD with a 3 × 3 digital count summing scheme (DCS); (A) conventional CT imaging with water (i.e., linear attenuation coefficient maps), (B) water-bone material decomposition, and (C) K-edge imaging with tungsten. The tube current was changed from 1 mA to 1000 mA and the nCRLB was assessed. RESULTS: The recorded count rate curves were fitted by the non-paralyzable detection model with the effective deadtime parameter. The best fit was achieved by 25.8 ns for the conventional PCD, 18.6 ns for MEICC and 1CC, 140.5 ns for ACS, and 209.0 ns for DCS. The nCRLBs were strongly dependent on count rates. MEICC provided the best nCRLBs for all of the imaging tasks over the count rate range investigated except for a few conditions such as K-edge imaging at 1 mA. PP decreased the merit of MEICC over the conventional PCD in addressing CS. Nonetheless, MEICC consistently provided better nCRLBs than the conventional PCD did. The nCRLBs of MEICC were in the range of 49-58% of those of the conventional PCD for K-edge imaging, 45-76% for water-bone material decomposition, and 81-88% for the conventional CT imaging (i.e., linear attenuation coefficient maps). ACS provided better nCRLBs than the conventional PCD did only when the effect of PP was minor (e.g., when the counting efficiency of the conventional PCD was higher than 0.95 with the tube current of up to 100 mA). CONCLUSION: Besides a few cases, MEICC provides the best nCRLBs for all of the tasks at all of the count rates. ACS and DCS provide better nCRLBs than the conventional PCD does only when count rates are very low.


Assuntos
Fótons , Simulação por Computador , Método de Monte Carlo
19.
Med Phys ; 37(8): 3957-69, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879558

RESUMO

PURPOSE: Recently, novel CdTe photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed. When such detectors are operated under a high x-ray flux, however, coincident pulses distort the recorded energy spectrum. These distortions are called pulse pileup effects. It is essential to compensate for these effects on the recorded energy spectrum in order to take full advantage of spectral information PCXDs provide. Such compensation can be achieved by incorporating a pileup model into the image reconstruction process for computed tomography, that is, as a part of the forward imaging process, and iteratively estimating either the imaged object or the line integrals using, e.g., a maximum likelihood approach. The aim of this study was to develop a new analytical pulse pileup model for both peak and tail pileup effects for nonparalyzable detectors. METHODS: The model takes into account the following factors: The bipolar shape of the pulse, the distribution function of time intervals between random events, and the input probability density function of photon energies. The authors used Monte Carlo simulations to evaluate the model. RESULTS: The recorded spectra estimated by the model were in an excellent agreement with those obtained by Monte Carlo simulations for various levels of pulse pileup effects. The coefficients of variation (i.e., the root mean square difference divided by the mean of measurements) were 5.3%-10.0% for deadtime losses of 1%-50% with a polychromatic incident x-ray spectrum. CONCLUSIONS: The proposed pulse pileup model can predict recorded spectrum with relatively good accuracy.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Fotometria/instrumentação , Radiografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Transdutores , Simulação por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Raios X
20.
Med Phys ; 47(5): 2085-2098, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31984498

RESUMO

PURPOSE: Smaller pixel sizes of x-ray photon counting detectors (PCDs) are advantageous for count rate capabilities but disadvantageous for charge sharing. With charge sharing, the energy of an x-ray photon may be split and one photon may produce two or more counts at adjacent pixels, both at lower energies than the incident energy. This "double-counting" increases noise variance and degrades the spectral response. Overall, it has a significantly negative impact on the performance of PCD-based computed tomography (CT). Charge sharing is induced by the detection physics and occurs regardless of count rates; thus, it is impossible to avoid. We propose in this paper a method that has a potential to address both noise and bias added by charge sharing. METHODS: We propose applying a multi-energy inter-pixel coincidence counter (MEICC) technique, which uses energy-dependent coincidence counters, keeps the book of charge sharing events during data acquisition, and provides the exact number of charge sharing occurrences, which can be used to either correct or compensate for them after the acquisition is completed. MEICC does not interfere with the primary counting process; therefore, PCDs with MEICC will remain as fast as those without MEICC. MEICC can be implemented using current electronics technology because its inter-pixel coincidence counters used to handle digital data are rather simple. We evaluated Cramér-Rao lower bound (CRLB) of PCDs with and without MEICC using a Monte Carlo simulation. RESULTS: When the number of energy windows was four or larger and eight neighboring pixels were used, the CRLBs of 225-µm PCD with MEICC normalized by those of the current PCD with the same number of windows were 0.361-0.383 for water density images of two basis functions, which was only 5.7-16.4% worse than those of a PCD without charge sharing (which were at 0.329-0.358). In contrast, the normalized CRLBs of the PCD with one coincidence counter were 0.466-0.499, which were 37.3-45.6% worse than the PCD without charge sharing. The use of eight neighboring pixels provided ~10% better CRLB values than four neighboring pixels for MEICC. With four energy windows, decreasing the number of coincidence counters from 16 to 9 only slightly increased the CRLB from 0.255 to 0.269 (which corresponded to as little as a 5.5% change). The normalized CRLBs of MEICC for K-edge imaging (gold) were 0.295-0.426, while those of the one coincidence counter were 0.926-0.959 and the ideal PCDs were 0.126-0.146. CONCLUSIONS: The proposed MEICC provides spectral information that can be used to address charge sharing problems in PCDs and is expected to satisfy the requirements for clinical x-ray CT. MEICC is very effective, especially for K-edge imaging, which requires accurate spectral information.


Assuntos
Fótons , Contagem de Cintilação/instrumentação , Calibragem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa