Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894513

RESUMO

Developing a variety of safe and effective functioning wound dressings is a never-ending objective. Due to their exceptional antibacterial activity, biocompatibility, biodegradability, and healing-promoting properties, functionalized chitosan nanocomposites have attracted considerable attention in wound dressing applications. Herein, a novel bio-nanocomposite membrane with a variety of bio-characteristics was created through the incorporation of zinc oxide nanoparticles (ZnONPs) into amine-functionalized chitosan membrane (Am-CS). The developed ZnO@Am-CS bio-nanocomposite membrane was characterized by various analysis tools. Compared to pristine Am-CS, the developed ZnO@Am-CS membrane revealed higher water uptake and adequate mechanical properties. Moreover, increasing the ZnONP content from 0.025 to 0.1% had a positive impact on antibacterial activity against Gram-positive and Gram-negative bacteria. A maximum inhibition of 89.4% was recorded against Escherichia coli, with a maximum inhibition zone of 38 ± 0.17 mm, and was achieved by the ZnO (0.1%)@Am-CS membrane compared to 72.5% and 28 ± 0.23 mm achieved by the native Am-CS membrane. Furthermore, the bio-nanocomposite membrane demonstrated acceptable antioxidant activity, with a maximum radical scavenging value of 46%. In addition, the bio-nanocomposite membrane showed better biocompatibility and reliable biodegradability, while the cytotoxicity assessment emphasized its safety towards normal cells, with the cell viability reaching 95.7%, suggesting its potential use for advanced wound dressing applications.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas
2.
Luminescence ; 37(4): 543-550, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34907663

RESUMO

To analyze alogliptin in its pharmaceutical dosage forms and human plasma, a sensitive, inexpensive, simple, and precise spectrofluorimetric method was developed and tested. This method was also used to investigate the drug's pharmacokinetic behaviour in the blood of rats. This was based on the Hantzsch reaction, which produces yellowish luminous products that can be detected spectrofluorometrically at 480 and 415 nm for emission and excitation, respectively, when the primary amine group in the examined drug reacts with acetylacetone and formaldehyde. Several experimental parameters that affect the reaction product's development and stability were explored and improved. The curve of fluorescence and concentration for alogliptin was linear in the concentration range 0.05-3.60 µg ml-1 . The proposed approach was validated according to International Council for Harmonization criteria. The method was successfully utilized to evaluate the examined drug in dose formulations and spiked human plasma with high accuracy.


Assuntos
Hipoglicemiantes , Piperidinas , Animais , Humanos , Ratos , Espectrometria de Fluorescência/métodos , Comprimidos , Uracila/análogos & derivados
3.
Sci Rep ; 12(1): 12972, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902774

RESUMO

In this investigation, Kaolin (K) impregnated aminated chitosan (AM-CTS) composite beads were fabricated with multi-features including low-cost, high performance, renewable and ease of separation for adsorption of anionic Congo red (CR) dye. Characterization tools such as FTIR, XRD, SEM, TGA, BET, XPS and Zeta potential were thoroughly employed to confirm the successful formulation process. The results revealed that K@ AM-CTS composite beads displayed higher specific surface area (128.52 m2/g), while the thermal stability was prominently improved compared to pure AM-CTS. In addition, the adsorption equilibrium of CR dye was accomplished rapidly and closely gotten within 45 min. The removal efficiency was significantly enriched and reached 90.7% with increasing kaolin content up to 0.75%, compared to 20.3 and 58% for pristine kaolin and AM-CTS, respectively. Moreover, the adsorption process obeyed the pseudo-first order kinetic model, while data were agreed with the Freundlich isotherm model with a maximum adsorption capacity reached 104 mg/g at pH 6. Furthermore, D-R isotherm model demonstrated the physical adsorption process of CR dye, which includes the electrostatic interactions, ion exchange and H-bonding. Thermodynamics evidenced the spontaneous and endothermic nature of the adsorption process. Interestingly, the developed K@AM-CTS composites beads showed better reusability for eight consecutive cycles, suggesting their feasible applicability for adsorptive removal anionic dyes from polluted aquatic bodies.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Ânions , Quitosana/química , Corantes , Vermelho Congo/química , Concentração de Íons de Hidrogênio , Caulim , Cinética , Termodinâmica , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa