Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Res ; 231(Pt 1): 116086, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169141

RESUMO

Water pollution due to organic waste and various microorganisms cause severe health problems. Numbers of techniques are used to eliminate organic waste and microorganisms from water because water pollution is a substantial issue in the current era. In the present study, sustainable and effective CuO/SnO2@g-C3N4 nanocomposites were prepared via green and chemical approach. The photo degradation of ciprofloxacin (CIP) and methylene blue (MB) by the green synthesized nanocomposite were tested. Visible and dark conditions both were used to conduct this test. The results showed that the nanocomposite is much more effective in light than in dark conditions. The synthesized nanocomposite was also tested both in light and dark against highly drug resistant microorganisms' Bacillus subtilis (B.subtilis) and Escherichia coli (E.coli). As a result, the antibacterial evaluation revealed substantial antibacterial activity in the presence of light, with a zone of inhibition covering an area of 19 (±0.5) mm and 20 (±0.1) mm, respectively, against gram negative and gram positive bacteria such as E. coli and B. subtilis. The results showed that the CuO/SnO2@g-C3N4 nanocomposite is a stable, eco-friendly photocatalyst with significant resistance to CIP and MB degradation and a substantial inhibitory effect towards microorganisms in visible light.


Assuntos
Ciprofloxacina , Nanocompostos , Ciprofloxacina/farmacologia , Azul de Metileno/farmacologia , Azul de Metileno/química , Espécies Reativas de Oxigênio , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Nanocompostos/química , Catálise
2.
Environ Res ; 231(Pt 1): 116093, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178753

RESUMO

Purified water is the most concerning issue these days, and utmost conventional practices are allied with various downsides. Therefore, an ecologically benign and easily amicable therapeutic approach is the requirement. In this wonder, nanometer phenomena bring an innovative change to the material world. It has the potential to produce nanosized materials for wide-ranging applications. The subsequent research highlights the synthesis of Ag/Mn-ZnO nanomaterial via a one-pot hydrothermal route with an efficient photocatalytic activity against organic dyes and bacteria. The outcomes revealed that the size of the particle (4-5 nm) and dispersion of spherically shaped silver nanoparticles intensely affected by employing Mn-ZnO as a support material. Use of silver NPs as a dopant activates the active sites of the support medium and provides a higher surface area to upsurge the degradation rate. The synthesized nanomaterial was evaluated against photocatalytic activity using Methyl orange and alizarin red as model dyes and confided that more than 70% of both the dyes degraded under 100 min duration. It is well recognize that the modified nanomaterial recreates an essential role in every light-based reaction, and virtually produced highly reactive oxygen species. The synthesized nanomaterial was also evaluated against E. coli bacterium both in light and dark. The zone of inhibition in the presence of Ag/Mn-ZnO was observed both in light (18 ± 0.2 mm) and dark (12 ± 0.4 mm). The hemolytic activity shows that Ag/Mn-ZnO has very low toxicity. Hence, the prepared Ag/Mn-ZnO nanomaterial might be an effective tool against the depletion of further harmful environmental pollutants and microbes.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Óxido de Zinco , Fotólise , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Escherichia coli , Nanoestruturas/toxicidade , Nanoestruturas/química
3.
Ecotoxicol Environ Saf ; 267: 115564, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890248

RESUMO

The use of Advance Oxidation Process (AOPs) has been extensively examined in order to eradicate organic pollutants. This review assesses the efficacy of photolysis, O3 based (O3/UV, O3/H2O2, O3/H2O2/UV, H2O2/UV, Fenton, Fenton-like, hetero-system) and sonochemical and electro-oxidative AOPs in this regard. The main purpose of this review and some suggestions for the advancement of AOPs is to facilitate the elimination of toxic organic pollutants. Initially proposed for the purification of drinking water in 1980, AOPs have since been employed for various wastewater treatments. AOPs technologies are essentially a process intensification through the use of hybrid methods for wastewater treatment, which generate large amounts of hydroxyl (•OH) and sulfate (SO4·-) radicals, the ultimate oxidants for the remediation of organic pollutants. This review covers the use of AOPs and ozone or UV treatment in combination to create a powerful method of wastewater treatment. This novel approach has been demonstrated to be highly effective, with the acceleration of the oxidation process through Fenton reaction and photocatalytic oxidation technologies. It is clear that Advance Oxidation Process are a helpful for the degradation of organic toxic compounds. Additionally, other processes such as •OH and SO4·- radical-based oxidation may also arise during AOPs treatment and contribute to the reduction of target organic pollutants. This review summarizes the current development of AOPs treatment of wastewater organic pollutants.


Assuntos
Poluentes Ambientais , Radical Hidroxila , Peróxido de Hidrogênio , Águas Residuárias , Oxirredução
4.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838692

RESUMO

With the increasing demand for wastewater treatment and multidrug resistance among pathogens, it was necessary to develop an efficient catalyst with enhanced photocatalytic and antibacterial applications. The present study proposes a facile and green strategy for synthesizing zinc oxide (ZnO) decorated nickel (Ni) nanomaterials. The synthesized Ni/ZnO nanocomposite displays a high crystallinity and spherical morphology, which was systematically characterized by XRD, SEM, FT-IR, UV-visible spectroscopy, EDX, HRTEM, and XPS techniques. In addition, the bacteriological tests indicated that Ni/ZnO nanocomposite exhibits potent antibacterial activity against human pathogens, i.e., Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The inhibition zone observed in light and dark conditions for E. coli was 16 (±0.3) mm and 8 (±0.4) mm, respectively, which confirms the high efficacy of the nanocomposite in the presence of light compared to dark conditions. The detailed inhibition mechanism of said bacterium and damage were also studied through fluorescence spectroscopy and SEM analysis, respectively. Evaluation of antioxidant activity based on free radical scavenging activity revealed that the Ni/ZnO nanocomposite effectively scavenges DPPH. In the photocatalytic performance, the Ni/ZnO nanocomposite exhibited a remarkable degradation ability under the optimized condition, which was attributed to their controllable size, high surface area, and exceptional morphology. Good selectivity, high photodegradation, and antibacterial activities and satisfactory hemolytic behavior of the as-prepared nanocomposite make them able to become a potential candidate for superior biological performance and environmental remediation.


Assuntos
Nanocompostos , Óxido de Zinco , Humanos , Antioxidantes/farmacologia , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Níquel/farmacologia , Escherichia coli , Staphylococcus aureus , Biomimética , Antibacterianos/farmacologia , Nanocompostos/química , Catálise
5.
Microb Pathog ; 102: 133-142, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27916692

RESUMO

Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 µg/mL) and 18 ± 1.6 mm (MIC = 12.50 µg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 µg/mL) and Bacillus subtilus (MIC = 12.50 µg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas/administração & dosagem , Prata , Antibacterianos/química , Bactérias/metabolismo , Bactérias/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Microb Pathog ; 107: 419-424, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28435109

RESUMO

The formation of metal nanoparticles is one of the most vast and intensifying research areas in favor of prospective applications for the advancement of new technologies. It is a well-founded, significant feature of green chemistry that making marvelous interconnection between nano-biotechnology and microbial biotechnology. In the present research, the aqueous extract of medicinally important plant Coptis Chinensis (in Chinese called "gold thread") was applied for the synthesis of gold nanoparticles (Au-NPs). The crystalline structure, size, shape and dispersion of Au-NPs were confirmed by using various characterization techniques i.e. X-ray Diffraction (XRD), High Resolution Transmission Electron Microscope (HRTEM) and Energy Dispersive X-ray (EDX). Well dispersed face centered cubic crystalline structures were obtained in the this contribution. The possible phyto-chemicals involved in the reduction and stabilization of Au-NPs were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR). The prepared NPs were tested against highly drug resistance bacterium Escherichia coli both in light and dark. The results illustrated that the antibacterial efficiency of photo irradiated Au-NPs was several times higher than in dark Au-NPs. The zone of inhibition for irradiated Au-NPs was19 ± 0.5 mm, which was higher than in dark 14 ± 0.4 mm. This high antibacterial activity of photo irradiated Au-NPs are due to the production of reactive oxygen species which is responsible for the inhibition of bacteria.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Ouro/efeitos da radiação , Luz , Nanopartículas Metálicas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/química , Coptis/química , Farmacorresistência Bacteriana , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Microb Pathog ; 110: 304-312, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28705747

RESUMO

Nanoscale materials have shown promising results in the field of medicine as therapeutic agents and drugs delivery vehicles. In the current study, gold nanoparticles (AuNPs) were prepared by a green and facile method using the aqueous extract of Rhazya stricta decne as a source of reducing and stabilizing agents. The bio-fabricated AuNPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and FTIR spectroscopy. Antimicrobial activities of the biosynthesized AuNPs were tested against Leishmania tropica (HTD7), E. coli and S. aureus. AuNPs were the most effective agents in inhibiting the growth of intra-THP-1 amastigotes at 100 µg/mL concentration (IC50 = 43 µg/mL) after 48-h incubation. In addition, the prepared AuNPs also displayed good activity against E. coli (MIC = 25.0 µg/mL) and Bacillus subtilis (50.0 µg/mL). Interestingly, biogenic AuNPs did not exhibit cytotoxic effect against the THP-1 cells after 24 h exposure. The findings of this study conclude that phytochemicals-stabilized AuNPs could be a safe and effective source of antimicrobial agents.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Ouro/química , Leishmania/efeitos dos fármacos , Nanopartículas Metálicas/química , Compostos Fitoquímicos/síntese química , Compostos Fitoquímicos/farmacologia , Apocynaceae/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ouro/farmacologia , Química Verde , Humanos , Leishmania tropica/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/análise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Células THP-1/efeitos dos fármacos , Difração de Raios X
8.
Microb Pathog ; 99: 271-281, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27591110

RESUMO

New strategies are required to improve the efficacy of drugs and to treat the emerging microbial resistance. An effective strategy is to combine drugs with metal nanoparticles for the control of microbial infections and resistance. Keeping in view this fact, we developed a facile and eco-friendly protocol for the synthesis of amphotericin B-conjugated silver nanoparticles and their assessment as an antifungal agent. Phytochemicals from the aqueous extract of Maytenus royleanus and amphotericin B were used as capping agents to prepare two types of silver nanoparticles i.e. (i) biogenic silver nanoparticles (b-AgNPs) and (ii) amphotericin B-conjugated biogenic silver nanoparticles (Amp-bAgNPs). UV-Vis spectroscopy was used to detect the characteristic surface Plasmon resonance peaks (SPR) for the prepared nanoparticles (424-433 nm). High-resolution transmission electron microscopy (HRTEM) study revealed the formation of well dispersed and spherical silver nanoparticles and Amp-bAgNPs with an average particles size of 10 and 15 nm. EDX and FTIR studies confirmed the elemental composition and surface adhered biomolecules in the prepared nanoparticles respectively. Biogenic silver nanoparticles revealed low to moderate antifungal activity (4-8 mm ± 0.2), however, the amphotericin B conjugated silver nanoparticles exhibited significant activity against Candida albicans (16 mm ± 1.4) and Candida tropicalis (18 mm ± 1.5). In conclusion, the enhanced antifungal activity of the Amp-AgNPs conjugate system is due to the synergy between the antifungal activity of amphotericin B and the antimicrobial property of silver. The findings of this study suggest that the conjugated nanoparticles could be used as efficient antifungal agents and drug delivery vehicles. Furthermore, this is the first report describing the synthesis of silver nanoparticles using the aqueous extract of Maytenus royleanus and the conjugation of amphotericin B, an antifungal drug, to the phytosynthesized silver nanoparticles.


Assuntos
Anfotericina B/metabolismo , Antifúngicos/metabolismo , Nanopartículas/metabolismo , Prata/metabolismo , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Sinergismo Farmacológico , Maytenus/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Micoses , Nanopartículas/química , Nanopartículas/ultraestrutura , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Espectrometria por Raios X , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
9.
Sci Rep ; 14(1): 1618, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238395

RESUMO

The elimination of hazardous industrial pollutants from aqueous solutions is an emerging area of scientific research and a worldwide problem. An efficient catalyst, Ag-CuO was synthesized for the degradation of methylene blue, the chemical sensing of ammonia. A simple novel synthetic method was reported in which new plant material Capparis decidua was used for the reduction and stabilization of the synthesized nanocatalyst. A Varying amount of Ag was doped into CuO to optimize the best catalyst that met the required objectives. Through this, the Ag-CuO nanocomposite was characterized by XRD, SEM, HR-TEM, EDX, and FTIR techniques. The mechanism of increased catalytic activity with Ag doping involves the formation of charge sink and suppression of drop back probability of charge from conduction to valance band. Herein, 2.7 mol % Ag-CuO exhibited better catalytic activities and it was used through subsequent catalytic experiments. The experimental conditions such as pH, catalyst dose, analyte initial concentration, and contact time were optimized. The as-synthesized nanocomposite demonstrates an excellent degradation efficacy of MB which is 97% at pH 9. More interestingly, the as-synthesized catalyst was successfully applied for the chemical sensing of ammonia even at very low concentrations. The lower limit of detection (LLOD) also called analytic sensitivity was calculated for ammonia sensing and found to be 1.37 ppm.

10.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839035

RESUMO

In this work, a manganese selenide/graphene oxide (MnSe/GO)-based composite was prepared for wet-chemical assisted method against organic dye; herein, methylene blue (MB) dye removal from the water was employed as a metal selenide-based photocatalyst. The synthesized MnSe/GO composite was systematically characterized by X-ray diffraction (XRD), Fourier transform electron microscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV-visible diffuse reflectance spectroscopy (UV-vis. DRS). The structural characteristic revealed the adequate synthesis of the sample with good crystallinity and purity of the obtained products. The morphological analysis indicates the formation of MnSe nanoflakes composed of tiny particles on their surface. At the same time, the GO nanosheets with high aggregation were formed, which may be due to the van der Waals forces. The bond interaction and compositional analysis studies confirmed and supported the structural findings with high purity. The optical analysis showed the bandgap energies of MnSe and their composites MnSe (1.7 eV), 7% GO-MnSe (2.42 eV), 14% GO-MnSe (2.6 eV), 21% GO-MnSe (3.02 eV), and 28% GO-MnSe (3.24 eV) respectively, which increase the bandgap energy after GO and MnSe recombination. Among different contents, the optimized 21% GO-MnSe composite displayed enhanced photocatalytic properties. For instance, a short time of 90 min was taken compared with other concentrations due to the narrow bandgap of MnSe and the highly conductive charge carrier's support, making the process to remove MB from water faster. These results show that the selenide-based photocatalyst can be an attractive candidate for future advanced photocatalysis applications.

11.
Front Chem ; 11: 1152217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007050

RESUMO

The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials' mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs' exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.

12.
Front Psychol ; 13: 1006293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237670

RESUMO

The study aims to explore the role of gender diversity in debt financing choices among Chinese listed firms. The study used the Chinese listed firm's data from 1991 to 2022 from the Chinese Stock Market return. The study used the fixed effect regression analysis and revealed that gender diversity positively affects debt financing among Chinese firms. Additionally, mass theory results suggested that at least three females on the board significantly influence firms. It served as the voice of gender diversity to influence the board's decisions regarding debt financing. The study has several theoretical and practical implications. This study will enlighten the Chinese boardroom dynamics by reassuring them to add more females to diversity policies. It will benefit future studies on boardroom activities and debt financing in emerging economies. It will be practical guidance for the Chinese policymakers, governing authorities, and corporate executives. The study stresses the need for significant diversity on the board rather than one female presence on the board. Secondly, this study contradicts the stereotype perception that females are not making risky decisions.

13.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407197

RESUMO

Noble metal nanoparticles (NMNPs) are viable alternative green sources compared to the chemical available methods in several approach like Food, medical, biotechnology, and textile industries. The biological synthesis of platinum nanoparticles (PtNPs), as a strong photocatalytic agent, has proved as more effective and safer method. In this study, PtNPs were synthesized at four different temperatures (25 °C, 50 °C, 70 °C, and 100 °C). PtNPs synthesized at 100 °C were smaller and exhibited spherical morphology with a high degree of dispersion. A series of physicochemical characterizations were applied to investigate the synthesis, particle size, crystalline nature, and surface morphology of PtNPs. The biosynthesized PtNPs were tested for the photodegradation of methylene blue (MB) under visible light irradiations. The results showed that PtNPs exhibited remarkable photocatalytic activity by degrading 98% of MB only in 40 min. The acid phosphatase mediated PtNPs showed strong bacterial inhibition efficiency against S. aureus and E. coli. Furthermore, it showed high antioxidant activity (88%) against 1,1-diphenyl-2-picryl-hydrazil (DPPH). In conclusion, this study provided an overview of the applications of PtNPs in food chemistry, biotechnology, and textile industries for the deterioration of the natural and synthetic dyes and its potential application in the suppression of pathogenic microbes of the biological systems. Thus, it could be used as a novel approach in the food microbiology, biomedical and environmental applications.

14.
Photodiagnosis Photodyn Ther ; 38: 102853, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398263

RESUMO

Environmental pollution and various bacterial strains cause severe health problems. Thus a need exists to synthesize new materials and develop new techniques which can be used against these hazardous pathogens and components. In this research work, sustainable and effective Co/ZnO nanocomposites were prepared via a new hydrothermal technique and ammonia evaporation method. The synthesized nanomaterial was analytically characterized through various techniques such as X-ray diffraction (XRD), UV-vis spectroscopy, Scanning electron microscope (SEM), High transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The as prepared nanocomposite was tested for photodegradation of methylene blue (MB). This test was performed both in visible light and in dark condition. The results demonstrate that the said material is more efficient in light compared to dark conditions and decomposed more than 80% MB dye only in 60 min. The synthesized nanomaterial Co/ZnO was also tested against highly drug resistant bacteria Escherichia coli and Staphylococcus aureus both in light and dark. Hence, the antibacterial assessment indicates the zone of inhibition in visible light of Co/ZnO counter with Escherichia coli is 15 (±0.2) and for Staphylococcus aureus is 18 (±0.4) mm and in dark for Escherichia coli is 11 (±0.6) and for Staphylococcus aureus is 14 (±0.1) mm. Moreover, the detail mechanism, reactive oxygen species production and bacterial surface damage were also observed. We demonstrate that Co/ZnO nanomaterial is stable, eco-friendly photocatalyst shows high strength against MB degradation and also shows strong inhibition effect against pathogens in visible light.


Assuntos
Nanocompostos , Fotoquimioterapia , Infecções Estafilocócicas , Óxido de Zinco , Amônia/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Azul de Metileno/química , Azul de Metileno/farmacologia , Nanocompostos/química , Fotoquimioterapia/métodos , Staphylococcus aureus , Óxido de Zinco/farmacologia
15.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432270

RESUMO

Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.

16.
Photodiagnosis Photodyn Ther ; 37: 102681, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34915183

RESUMO

The increase of microbial resistance poses threats to human health. Therefore, efficient treatment of microbial resistance is a global challenge.. During this study, the Ag/NiO nanocomposite was fabricated via simple and ecofriendly method, using Uncaria rhynchophylla extract as a reducing and capping agent to avoid the aggregation of as synthesized nanomaterials. Here, a range of characterization techniques were employed to characterize the sample which includes UV-vis spectroscopy, X-ray diffraction, FTIR spectroscopy, electron diffraction spectroscopy (EDX), scanning electron microscopy (SEM). Furthermore, the resultant nanocomposite demonstrated an efficient ability for the inhibition of both gram-positive and gram negative pathogenic multidrug resistant bacteria. Additionally, the Ag/NiO nanocomposite showed a durable antioxidant effect against DPPH that could still reach 63% at very low concentration, i.e. 0.5 mg/mL. Interestingly, the synthesized nanocomposite is efficient for the production of reactive oxygen species (ROS) and shows no hemolytic activity. Likewise, the Ag/NiO nanocomposite displayed excellent photocatalytic activity to degrade 85% methylene blue (MB) by 4 mg/25 mL and could be used for waste water treatment. It is believed that synthesized nanostructure with desirable morphology and preparation simplicity can be promising material for antimicrobial, antioxidant and catalytic applications.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Fotoquimioterapia , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Humanos , Nanocompostos/química , Fotoquimioterapia/métodos , Uncaria
17.
Photodiagnosis Photodyn Ther ; 33: 102162, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33373742

RESUMO

A major current biomedical challenge is to find materials that are specific, have high efficiency and with long lasting stability to serve as antimicrobial agents. In this contribution we examined new bifunctional nanostructural materials (ZnO/Pd-MCM-41) which were synthesized by a new hydrothermal procedure. To deposit active cites i.e. ZnO, a new protocol was followed in which catechol was used as a precipitating agent. Results indicated that nanostructures comprising palladium nanocrystals of a small size dispersed consistently within the hexagonal pores of the MCM-41 and also ZnO was successfully coated on mesoporous Pd-MCM-41 and that the mesoporous Pd-MCM-41 structure has been well-maintained upon modification of ZnO. The ZnO/Pd-MCM-41 is promising antibacterial agent and have efficient light inhibition activity towards Escherichia coli (E. coli), Psedomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The inhibition zone of irradiated ZnO/Pd-MCM-41 nanostructure against E. coli, P. aeruginosa and S. aureus were (17 ± 0.4) mm, 18 (±0.4) mm and 22 (±0.2) mm respectively while that in dark were (9 ± 0.5) mm, 11 (±0.3) mm and 13 (±0.4) mm respectively. The production of reactive oxygen species and hemolytic assay were also analyzed. Different parameters affecting the photo-inhibition efficiency of ZnO/Pd-MCM-41 were also studied. Likewise, the antioxidant activity of these nanostructures was studied against DPPH stabilization. Results indicated that the synthesized nanostructures are highly active and stabilized 99 % DPPH at very low concentration i.e. 1.4 mg/mL.


Assuntos
Preparações Farmacêuticas , Fotoquimioterapia , Óxido de Zinco , Antibacterianos/farmacologia , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício , Staphylococcus aureus
18.
Photodiagnosis Photodyn Ther ; 36: 102619, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748999

RESUMO

The present study reports the synthesis of silver (Ag) decorated zinc oxide (ZnO) nanocomposite via green synthesis method by using Acacia arabica plant leaves extract as both reducing and capping agent. The results clearly indicate a uniform distribution of Ag nanoparticles (NPs) over ZnO surface. Various analytical and spectroscopic techniques were used for investigating the formation and morphology of as-synthesized Ag/ZnO nanocomposites. Emergence of SPR at 424 and 378 nm confirmed the synthesis of AgNPs and ZnO respectively. The confirmation of elemental composition and crystal structure of prepared nanomaterials (NMs) was carried out via EDX and XRD analysis. Results obtained from HRTEM and SEM analysis indicated small sized spherically shaped NMs. The as-synthesized was checked for its photocatalytic activity towards degradation of MB in the presence as well as absence of light irradiation. Results of degradation study revealed that Ag/ZnO exhibits remarkable photocatalytic activity in the presence of light whereby removing 90% of MB within 80 min. Moreover, the antibacterial activity of synthesized nanocomposite was examined in both visible light and dark conditions. The experiment showed that nanomaterial depicts enhanced antibacterial activity in light in comparison to dark. The results showed that the inhibition diameter of Ag/ZnO nanocomposite in light was found to be 18 (±0.2), 22 (±0.3) against E. coli and S. aureus respectively. The inhibition zone of the said nanomaterial against E. coli and S. aureus in dark was 11 (±0.3), 14 (±0.5) respectively. These results conclude that activity is delivered both in the presence of visible light and dark but efficiency of antibacterial activity is found to be more in visible light in comparison.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Fotoquimioterapia , Óxido de Zinco , Antibacterianos/farmacologia , Escherichia coli , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Prata/farmacologia , Staphylococcus aureus , Zinco , Óxido de Zinco/farmacologia
19.
Mater Sci Eng C Mater Biol Appl ; 126: 112146, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082957

RESUMO

In this research work, facile, economical and eco-benign experimental procedure were adopted to synthesize Au/MgO nanocomposite with the help of Tagetes minuta leaves extract. Phytochemicals present in the leaves of Tagetes minuta were acting as reducing and stabilizing agents to avoid aggregation of nanomaterials during the preparation of Au/MgO nanocomposite. The biologically synthesized nanocomposite were systematically characterized by UV-vis spectroscopy, Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA), dynamic light scattering (DLS) and elemental mapping. UV-visible spectrum confirmed the presence of MgO and Au due to the presence of two SPR peaks at 315 nm and 528 nm, respectively. Moreover, the Au/MgO nanocomposite exhibited superior photocatalytic, antibacterial, hemolytic, and antioxidant activities. Photocatalytic performance tests of Au/MgO nanocomposite were- appraised by the rapid degradation of the methylene blue (MB) under UV light illumination. More importantly, after four successive cycles of MB degradation, the photocatalytic efficacy remained unchanged, which ensures the stability of the Au/MgO nanocomposite. Furthermore, the antibacterial tests showed that the advanced nanocomposite inhibited the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with zones of inhibition 18 (±0.3), 21 (±0.5), and 19 (±0.4) mm, respectively. The cytotoxicity study revealed that Au/MgO nanocomposite is nontoxic to ordinary healthy RBCs. Interestingly, the Au/MgO nanocomposite also possesses an excellent antioxidant activity, whereby effectively scavenging 82% stable and harmful DPPH. Overall, the present study concludes that eco-benign Au/MgO nanocomposite has excellent potential for the remediation of bacterial pathogens and degradation of MB.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Tagetes , Antibacterianos/farmacologia , Catálise , Óxido de Magnésio , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
20.
Photodiagnosis Photodyn Ther ; 36: 102542, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547470

RESUMO

With increasing demand for the treatment of microbial resistance around the globe, it is necessary to develop metallic nanoparticles , ideally by the use of nontoxic medium i.e. plant constituents, that could arrest the microbial growth. For this reason, small and highly crystalline PdNPs were effectively synthesized by using Eryngium caeruleum leaf extract as both the reducing and capping agent. During the synthesis of PdNPs, the size and shape were made controlled by using different solvents i.e., ethanol, methanol and aqueous extract of Eryngium caeruleum. A series of physicochemical characterizations were applied to inquire the synthesis, crystal structure, particles size, and surface morphology of PdNPs. Furthermore, the PdNPs demonstrated excellent potential for the inactivation of gram-positive and gram-negative bacteria, where the methanol-PdNPs exhibited maximum growth inhibition zones against tested bacteria as compared to ethanol-PdNPs and aqueous-PdNPs. Besides, PdNPs showed better antioxidant activity to effectively scavenge 2, 2 diphenyl-1-picrylhydrazyl (DPPH). More importantly, the synthesized PdNPs are not only active for ROS generation but also show no hemolytic activity. We believe that this greener approach uncovered the useful and efficient applications of highly active PdNPs and their biocompatibility.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Paládio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa