RESUMO
PURPOSE: The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS: The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS: Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION: Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.
RESUMO
BACKGROUND: Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS: The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS: The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION: PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Prognóstico , Flutamida , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , RNA , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Protocaderinas , Neoplasias PancreáticasRESUMO
Sorafenib resistance is a major challenge in the therapy for advanced hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of HCC resistance to sorafenib remain unclear. Activator of thyroid and retinoid receptor (ACTR, also known as SRC-3), overexpressed in HCC patients, plays an important oncogenic role in HCC; however, the link between ACTR and sorafenib resistance in HCC is unknown. Our study demonstrated that ACTR was one of the most upregulated genes in sorafenib-resistant HCC xenografts. ACTR increases sorafenib resistance through regulation of the Warburg effect. ACTR promotes glycolysis through upregulation of glucose uptake, ATP and lactate production, and reduction of the extracellular acidification and the oxygen consumption rates. Glycolysis regulated by ACTR is vital for the susceptibility of HCC to sorafenib in vitro and in vivo. Mechanistically, ACTR knockout or knockdown decreases the expression of glycolytic enzymes. In HCC patients, ACTR expression is positively correlated with glycolytic gene expression and is associated with poorer outcome. Furthermore, ACTR interacts with the central regulator of the Warburg effect, c-Myc, and promotes its recruitment to glycolytic gene promoters. Our findings provide new clues regarding the role of ACTR as a prospective sensitizing target for sorafenib therapy in HCC.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Hepáticas/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Sorafenibe/farmacologia , Animais , Carcinoma Hepatocelular/patologia , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The unfolded protein response (UPR) signal in tumor cells activates UPR signaling in neighboring macrophages, which leads to tumor-promoting inflammation by up-regulating UPR target genes and proinflammatory cytokines. However, the molecular basis of this endoplasmic reticulum (ER) stress transmission remains largely unclear. Here, we identified the secreted form of Golgi protein 73 (GP73), a Golgi-associated protein functional critical for hepatocellular carcinoma (HCC) growth and metastasis, is indispensable for ER stress transmission. Notably, ER stressors increased the cellular secretion of GP73. Through GRP78, the secreted GP73 stimulated ER stress activation in neighboring macrophages, which then released cytokines and chemokines involved in the tumor-associated macrophage (TAM) phenotype. Analysis of HCC patients revealed a positive correlation of GP73 with glucose-regulated protein 78 (GRP78) expression and TAM density. High GP73 and CD206 expression was associated with poor prognosis. Blockade of GP73 decreased the density of TAMs, inhibited tumor growth, and prolonged survival in two mouse HCC models. Conclusion: Our findings provide insight into the molecular mechanisms of extracellular GP73 in the amplification and transmission of ER stress signals.
Assuntos
Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático/genética , Neoplasias Hepáticas/genética , Fosfoproteínas/genética , Microambiente Tumoral/genética , Análise de Variância , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Análise de Sobrevida , Regulação para Cima/genéticaRESUMO
Cadherin-6 (CDH6) is aberrantly expressed in cancer and closely associated with tumor progression. However, the functions of CDH6 in human osteosarcoma and the molecular mechanisms underlying CDH6 in osteosarcoma oncogenesis remain poorly understood. In this work, we assessed the role of CDH6 in human osteosarcoma and identified that the expression of CDH6 was closely related with the overall survival and poor prognosis of osteosarcoma patients. MicroRNAs (miRNAs) have been implicated as important epigenetic regulators during the progression of osteosarcoma. Using dual-luciferase reporter assays, we showed that miR-223-3p suppresses CDH6 expression by directly binding to the 3' UTR of CDH6. miR-223-3p overexpression significantly inhibited cell invasion, migration, growth, and proliferation by suppressing the CDH6 expression in vivo and in vitro. Besides, CDH6 overexpression in the miR-223-3p-transfected osteosarcoma cells effectively rescued the inhibition of cell invasion, migration, growth, and proliferation mediated by miR-223-3p. Additionally, Kaplan-Meier analysis suggests that the expression of miR-223-3p predicts favorable clinical outcomes for osteosarcoma patients. Moreover, the expression of miR-223-3p was downregulated in osteosarcoma patients and was negatively associated with the expression of CDH6. Collectively, these data highlight that miR-223-3p/CDH6 axis is an important novel pleiotropic regulator and could early predict the metastatic potential in human osteosarcoma treatments.
Assuntos
Neoplasias Ósseas/genética , Caderinas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/genética , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Prognóstico , Recidiva , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Hexokinase-2 (HK2), the initial as well as the rate-limiting step in glycolysis, is overexpressed in many human cancers, and correlates with poor clinical outcomes. Aerobic glycolysis is a hallmark of cancer, and drugs targeting its enzymes, including HK2, are being developed. However, the mechanisms of HK2 inhibition and the physiological significance of the HK2 inhibitors in cancer cells are rarely reported. Here, we show that microRNA-216a-5p (miR-216a-5p) inhibits HK2 expression by directly targeting its 3'-UTR in uveal melanoma cells. Through inhibition of HK2, miR-216a-5p dampens glycolysis by reducing HK activity, glucose uptake, lactate production, ATP generation, extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in uveal melanoma cells. Importantly, glycolysis regulated by miR-216a-5p is critical for its regulating uveal melanoma tumor growth both in vitro and in vivo. miR-216a-5p expression is negatively correlated with HK2 expression and predicts better outcome in uveal melanoma patients. Our findings provide clues regarding the role of miR-216a-5p as a tumor suppressor in uveal melanoma through the inhibition of HK2. Targeting HK2 through miR-216a-5p could be a promising therapeutic strategy in uveal melanoma.
Assuntos
Glicólise , Hexoquinase/metabolismo , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Aerobiose , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Hexoquinase/genética , Humanos , Melanoma/enzimologia , Camundongos , MicroRNAs/genética , Prognóstico , Neoplasias Uveais/enzimologiaRESUMO
BACKGROUND: Non-small-cell lung cancer (NSCLC) is characterized by abnormalities of numerous signaling proteins that play pivotal roles in cancer development and progression. Many of these proteins have been reported to be correlated with clinical outcomes of NSCLC. However, none of them could provide adequate accuracy of prognosis prediction in clinical application. METHODS: A total of 384 resected NSCLC specimens from two hospitals in Beijing (BJ) and Chongqing (CQ) were collected. Using immunohistochemistry (IHC) staining on stored formalin-fixed paraffin-embedded (FFPE) surgical samples, we examined the expression levels of 75 critical proteins on BJ samples. Random forest algorithm (RFA) and support vector machines (SVM) computation were applied to identify protein signatures on 2/3 randomly assigned BJ samples. The identified signatures were tested on the remaining BJ samples, and were further validated with CQ independent cohort. RESULTS: A 6-protein signature for adenocarcinoma (ADC) and a 5-protein signature for squamous cell carcinoma (SCC) were identified from training sets and tested in testing sets. In independent validation with CQ cohort, patients can also be divided into high- and low-risk groups with significantly different median overall survivals by Kaplan-Meier analysis, both in ADC (31 months vs. 87 months, HR 2.81; P < 0.001) and SCC patients (27 months vs. not reached, HR 9.97; P < 0.001). Cox regression analysis showed that both signatures are independent prognostic indicators and outperformed TNM staging (ADC: adjusted HR 3.07 vs. 2.43, SCC: adjusted HR 7.84 vs. 2.24). Particularly, we found that only the ADC patients in high-risk group significantly benefited from adjuvant chemotherapy (P = 0.018). CONCLUSIONS: Both ADC and SCC protein signatures could effectively stratify the prognosis of NSCLC patients, and may support patient selection for adjuvant chemotherapy.
Assuntos
Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Transdução de Sinais , Taxa de Sobrevida , Análise Serial de TecidosRESUMO
Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.
Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Estimativa de Kaplan-Meier , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Tamoxifeno/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Resultado do TratamentoRESUMO
Rho GTPase activating protein 26 (ARHGAP26) is a negative regulator of the Rho family that converts the small G proteins RhoA and Cdc42 to their inactive GDP-bound forms. It is essential for the CLIC/GEEC endocytic pathway, cell spreading, and muscle development. The present study shows that ARHGAP26 mRNA undergoes extensive A-to-I RNA editing in the 3' UTR that is specifically catalyzed by ADAR1. Furthermore, the mRNA and protein levels of ARHGAP26 were decreased in cells in which ADAR1 was knocked down. Conversely, ADAR1 overexpression increased the abundance of ARHGAP26 mRNA and protein. In addition, we found that both miR-30b-3p and miR-573 target the ARHGAP26 gene and that RNA editing of ARHGAP26 mediated by ADAR1 abolished the repression of its expression by miR-30b-3p or miR-573. When ADAR1 was overexpressed, the reduced abundance of ARHGAP26 protein mediated by miR-30b-3p or miR-573 was rescued. Importantly, we also found that knocking down ADAR1 elevated RhoA activity, which was consistent with the reduced level of ARHGAP26. Conversely, when ADAR1 was overexpressed, the amount of RhoA-GTP decreased. The similar expression patterns of ARHGAP26 and ADAR1 in human tissue samples further confirmed our findings. Taken together, our results suggest that ADAR1 regulates the expression of ARHGAP26 through A-to-I RNA editing by disrupting the binding of miR-30b-3p and miR-573 within the 3' UTR of ARHGAP26. This study provides a novel insight into the mechanism by which ADAR1 and its RNA editing function regulate microRNA-mediated modulation of target genes.
Assuntos
Adenosina Desaminase/metabolismo , Proteínas Ativadoras de GTPase/genética , MicroRNAs/metabolismo , Edição de RNA , Regiões 3' não Traduzidas , Adenosina Desaminase/biossíntese , Adenosina Desaminase/genética , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase/biossíntese , Humanos , MicroRNAs/genética , Neoplasias , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
OBJECTIVES: The purpose of this study was to show the contrast-enhanced sonographic features of various levels of renal artery rupture and to validate the therapeutic effects of percutaneous 915-MHz microwave ablation compared to hemostatic drug injection (batroxobin) using an in vivo canine renal artery injury model. METHODS: Three renal artery hemorrhage models (A, diameter <1 mm, subcapsular artery; B, diameter 1-2 mm, interlobar artery; and C, diameter 2-3 mm, segmental artery) were created in 24 canines for this study. Contrast-enhanced sonography was used to show the bleeding features and guide hemostatic therapies using 915-MHz microwave ablation and local batroxobin injection. Success rates were assessed according to amounts of bleeding, times required for hemostatic action, and volumes of fluid infusion required using pathologic examination as a reference standard. RESULTS: Contrast-enhanced sonography clearly showed renal artery ruptures with active bleeding at various levels and degrees and was very useful to make diagnoses and guide therapies. The success rate in the microwave treatment group was higher than that in the drug injection group (except group A; P< .05). The time required for hemostasis and the volume of fluid infusion required in the microwave group were notably less than those in the drug injection group (P < .05). CONCLUSIONS: Contrast-enhanced sonography is a useful imaging method for assessing renal vessel injury and guide interventional therapies. Contrast-enhanced sonographically guided percutaneous 915-MHz microwave ablation is a preferred hemostatic technique for treatment of renal artery injury, with greater effectiveness and less tissue damage compared to local drug injection.
Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/terapia , Batroxobina/administração & dosagem , Ablação por Cateter/métodos , Hemorragia/diagnóstico por imagem , Hemorragia/terapia , Artéria Renal/lesões , Animais , Meios de Contraste , Cães , Hemostáticos/administração & dosagem , Micro-Ondas/uso terapêutico , Fosfolipídeos , Artéria Renal/diagnóstico por imagem , Hexafluoreto de Enxofre , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento , Ultrassonografia de Intervenção/métodosRESUMO
OBJECTIVE: This study aimed to determine the expression level of biglycan in different lesion properties of endometrium and to investigate the possible function and prognostic value of biglycan in endometrial cancer. METHODS: Immunohistochemical staining (IHC) and quantitative realtime reverse transcription polymerase chain reaction (qRT-PCR) were used to determine the protein and mRNA levels of biglycan in human normal endometrium, atypical hyperplasia endometrium, and endometrial cancer tissue samples. The expression of biglycan in serum and peritoneal washings was detected by ELISA method. Then we analyzed the correlation of biglycan expression with clinicopathological parameters in endometrial cancer. RESULTS: (1) Biglycan was overexpressed in endometrial cancer, especially in cancerous mesenchyme. Moreover, biglycan expression was significantly correlated with histopathological grade and FIGO stage of endometrial cancer; (2) Biglycan expression level in sera and peritoneal washings was significantly higher in endometrial cancer patients; otherwise, Serum expression correlated with clinicopathological parameters of endometrial cancer; (3) Higher level expression of biglycan in cancerous mesenchyme correlated with poor prognosis of endometrial cancer. CONCLUSIONS: Biglycan might play a role in the progression of human endometrial cancer and it might be a useful molecular marker for the prognosis of endometrial cancer. This research is an initial step towards biglycan as a potential prognosis marker in endometrial cancer.
Assuntos
Biglicano/metabolismo , Hiperplasia Endometrial/metabolismo , Neoplasias do Endométrio/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Hiperplasia Endometrial/patologia , Hiperplasia Endometrial/cirurgia , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/cirurgia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Histerectomia , Imuno-Histoquímica , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resultado do TratamentoRESUMO
A comprehensive evaluation of the relationship between the densities of various cell types in the breast cancer tumor microenvironment and patient prognosis is currently lacking. Additionally, the absence of a large patch-level whole slide imaging (WSI) dataset of breast cancer with annotated cell types hinders the ability of artificial intelligence to evaluate cell density in breast cancer WSI. We first employed Lasso-Cox regression to build a breast cancer prognosis assessment model based on cell density in a population study. Pathology experts manually annotated a dataset containing over 70,000 patches and used transfer learning based on ResNet152 to develop an artificial intelligence model for identifying different cell types in these patches. The results showed that significant prognostic differences were observed among breast cancer patients stratified by cell density score (P = 0.0018), with the cell density score identified as an independent prognostic factor for breast cancer patients (P < 0.05). In the validation cohort, the predictive performance for overall survival (OS) was satisfactory, with area under the curve (AUC) values of 0.893 (OS) at 1-year, 0.823 (OS) at 3-year, and 0.861 (OS) at 5-year intervals. We trained a robust model based on ResNet152, achieving over 99% classification accuracy for different cell types in patches. These achievements offer new public resources and tools for personalized treatment and prognosis assessment.
RESUMO
Key Clinical Message: Ultrasound-guided core needle biopsy combined with immunohistochemistry and molecular testing could improve the diagnostic accuracy of bone metastases from follicular thyroid carcinoma, help to predict distant metastasis and prognosis. Abstract: Metastatic thyroid follicular carcinoma presenting initially with bone lesion is uncommon, its prime symptom is gradual onset, localized pain. Patient with bone metastasis who were diagnosed before thyroidectomy had a higher rate of mortality, clinician should be cautious in eliciting the clinical history and this insidious symptom in middle age group, carry out further examination. We are presenting two case reports of a follicular thyroid carcinoma with bone metastasis, ultrasound-guided core needle biopsy combined with immunohistochemistry (IHC) were carried out by our clinical team to determine the source and nature of the tumor, relevant literature was reviewed, molecular testing was discussed, we believe core needle biopsy combined with IHC and molecular testing improve the diagnostic accuracy of bone metastases from follicular thyroid carcinoma.
RESUMO
Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP) has been shown to play a role in cancer development and progression. However, the detailed role of HPIP in cancer cell growth and the exact mechanism by which HPIP regulates cancer cell proliferation remains unclear. Here, we report that HPIP is overexpressed in most of 328 liver cancer patients and regulates hepatoma cell proliferation through G2/M checkpoint activation. HPIP increased anchorage-dependent and -independent growth of human liver cancer cell lines. The amino acid region 531-631 of HPIP was important for its modulation of liver cancer cell growth. The increased effects of HPIP on liver cancer cell proliferation were associated with activation of the G2/M cell-cycle concomitant with a marked increase of cyclin B1 and the inhibition of the negative G2/M phase regulator GADD45α. HPIP knockdown dramatically suppressed the growth of HepG2 liver cancer cells in nude mice. These data highlight the important role of HPIP in liver cancer cell growth and suggest that HPIP may be a good target for liver cancer therapy.
Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células , Neoplasias Hepáticas/genética , Piperazinas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Terapia de Alvo Molecular , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
RESUMO
Introduction: Inflammation play important roles in the initiation and progression of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), septic shock, clotting dysfunction, or even death associated with SARS-CoV-2 infection. However, the pathogenic mechanisms underlying SARS-CoV-2-induced hyperinflammation are still largely unknown. Methods: The animal model of septic shock and ALI was established after LPS intraperitoneal injection or intratracheal instillation. Bone marrow-derived macrophages (BMDMs) from WT and BPOZ-2 KO mouse strains were harvested from the femurs and tibias of mice. Immunohistology staining, ELISA assay, coimmunoprecipitation, and immunoblot analysis were used to detect the histopathological changes of lung tissues and the expression of inflammatory factors and protein interaction. Results and conclusions: We show a distinct mechanism by which the SARS-CoV-2 N (SARS-2-N) protein targets Bood POZ-containing gene type 2 (BPOZ-2), a scaffold protein for the E3 ubiquitin ligase Cullin 3 that we identified as a negative regulator of inflammatory responses, to promote NLRP3 inflammasome activation. We first demonstrated that BPOZ-2 knockout (BPOZ-2 KO) mice were more susceptible to lipopolysaccharide (LPS)-induced septic shock and ALI and showed increased serum IL-1ß levels. In addition, BMDMs isolated from BPOZ-2 KO mice showed increased IL-1ß production in response to NLRP3 stimuli. Mechanistically, BPOZ-2 interacted with NLRP3 and mediated its degradation by recruiting Cullin 3. In particular, the expression of BPOZ-2 was significantly reduced in lung tissues from mice infected with SARS-CoV-2 and in cells overexpressing SARS-2-N. Importantly, proinflammatory responses triggered by the SARS-2-N were significantly blocked by BPOZ-2 reintroduction. Thus, we concluded that BPOZ-2 is a negative regulator of the NLPR3 inflammasome that likely contributes to SARS-CoV-2-induced hyperinflammation.
Assuntos
Lesão Pulmonar Aguda , COVID-19 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares , Choque Séptico , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Proteínas Culina , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMO
Lung cancer is ranked as the leading cause of cancer-related death worldwide, and the development of novel biomarkers is helpful to improve the prognosis of non-small cell lung cancer (NSCLC). Cell-in-cell structures (CICs), a novel functional surrogate of complicated cell behaviors, have shown promise in predicting the prognosis of cancer patients. However, the CIC profiling and its prognostic value remain unclear in NSCLC. In this study, we retrospectively explored the CIC profiling in a cohort of NSCLC tissues by using the "Epithelium-Macrophage-Leukocyte" (EML) method. The distribution of CICs was examined by the Chi-square test, and univariate and multivariate analyses were performed for survival analysis. Four types of CICs were identified in lung cancer tissues, namely, tumor-in-tumor (TiT), tumor-in-macrophage (TiM), lymphocyte-in-tumor (LiT), and macrophage-in-tumor (MiT). Among them, the latter three constituted the heterotypic CICs (heCICs). Overall, CICs were more frequently present in adenocarcinoma than in squamous cell carcinoma (P = 0.009), and LiT was more common in the upper lobe of the lung compared with other lobes (P = 0.020). In univariate analysis, the presence of TiM, heCIC density, TNM stage, T stage, and N stage showed association with the overall survival (OS) of NSCLC patients. Multivariate analysis revealed that heCICs (HR = 2.6, 95% CI 1.25-5.6) and lymph node invasion (HR = 2.6, 95% CI 1.33-5.1) were independent factors associated with the OS of NSCLC. Taken together, we profiled the CIC subtypes in NSCLC for the first time and demonstrated the prognostic value of heCICs, which may serve as a type of novel functional markers along with classical pathological factors in improving prognosis prediction for patients with NSCLC.
RESUMO
Currently, tumor-infiltrating lymphocytes (TILs) in invasive breast cancers are assessed solely on the basis of their number, whereas their spatial distribution is rarely investigated. Therefore, we evaluated TILs in 579 patients with invasive breast cancer of no special type (IBC-NST) with a focus on their spatial distributions in tumor center (TC) and invasive margin (IM). We also assessed a new factor, namely para-tumor infiltrating lymphocytes (PILs) in the para-tumor lobular area (Para). Five immunoarchitectural patterns (IPs) were observed, which were significantly associated with clinicopathological features, especially molecular subtypes, histological grades, clinical stages, and programmed death-ligand 1 (PD-L1) expression. High-TIL density (IP1/2) correlated with favorable disease-free survival (DFS) in TNBC patients (p = 0.04), but opposite results were observed for luminal B subtype patients (both the lowest TIL and PIL densities (IP5) correlated with good DFS, p = 0.013). Luminal B patients with high TILs in the IM and low TILs in the TC (IP3) exhibited the worst DFS, whereas those with low TILs (similar to IP5) and high PILs (IP4) exhibited poor DFS. We also identified TIL subpopulations with significantly different IPs. Our findings suggest that IP can be a potential prognostic factor for tumor immunity in IBC.
RESUMO
OBJECTIVE: To examine granulocyte colony stimulating factor (G-CSF) expression in human non-small cell lung cancer (NSCLC) as well as discuss its clinicopathological significance. METHODS: Specimens were obtained from 114 cases (53 cases with granulocyte infiltration) diagnosed pathologically as NSCLC in General Hospital of PLA. Paraffin-embedded tissues from these 114 cases of NSCLC were examined for expression of G-CSF by immunohistochemical staining. Correlation between G-CSF expression and pathological features, clinical manifestation, prognosis of patients with NSCLC was analyzed statistically. All the patients were retrospectively followed-up. RESULTS: Fifty-five of the 114 NSCLC specimens expressed G-CSF, and among these 41 (41/54, 75.9%) were large cell carcinoma, nine (9/30, 30.0%) were adenocarcinoma and five (5/30, 16.7%) were squamous cell carcinoma. The expression was significantly correlated with infiltration of tumor mass by neutrophilic granulocytes, histological type, necrosis, differentiation, lymph node metastases, distant metastases, recurrence and survival period (P < 0.01). There was no significant correlation with primary tumor size (P > 0.05). Logistic multi-factor analysis revealed that necrosis, lymph nodes metastases and distant metastases RR (risk ratio) in G-CSF positive group was 5.57, 6.28 and 5.24 times higher than those of G-CSF negative group (P < 0.05). There were remarkable difference of 5-year survival rates (0 and 12.1% respectively) and survival period (42 and 62 months respectively) between positive and negative groups (P < 0.01). CONCLUSIONS: NSCLC with G-CSF excretion are mainly large cell lung cancer. The pathologic characteristics of these cases with G-CSF expression included poor differentiation, remarkable atypia, prominent necrosis and infiltration of tumor mass by neutrophils or emperipolesis. These tumors are usually more aggressive in biological behavior and have worse prognosis than those without G-CSF expression.