Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 95, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424262

RESUMO

BACKGROUND: High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. RESULTS: We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. CONCLUSIONS: Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity.


Assuntos
Mapeamento Cromossômico , Cryptomeria/genética , Genes Recessivos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Fertilidade/genética , Ligação Genética , Genótipo , Locos de Características Quantitativas
3.
J Plant Res ; 118(2): 83-90, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791391

RESUMO

Using 11 microsatellite markers, we investigated the allelic variation and genetic structure of Cryptomeria japonica, across most of its natural distribution. The markers displayed high levels of polymorphism (average gene diversity=0.77, average number of alleles=24.0), in sharp contrast to the lower levels of polymorphism found in allozyme and cleaved amplified polymorphic sequence markers in previous studies. Little genetic differentiation was found among populations (F(ST)=0.028, P<0.001), probably because the species is wind-pollinated and long-lived. No clear relationship between Nei's genetic distances and geographical locations of the populations were found using the principal coordinate and unweighted pair-group method with arithmetic averaging analyses. The lack of such trends might be due partly to microsatellite homoplasy arising from mutation blurring the genealogical record. However, there was a trend towards high allelic diversity in five populations (Ashitaka, Ashiu, Oki-Island, Yakushima-Island-1 and -2), which are very close to, or in, refugial areas of the last glacial period as defined by Tsukada based on pollen analysis data and current climatic divisions. We postulate that these refugial populations might have been less affected by genetic drift than the other populations due to their relatively large size.


Assuntos
Cryptomeria/genética , Marcadores Genéticos , Repetições de Microssatélites/genética , Evolução Biológica , Variação Genética , Genética , Japão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa