Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(28): e2122618119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867738

RESUMO

Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.


Assuntos
AMP Cíclico , Corantes Fluorescentes , Hipocampo , Imagem Molecular , Neurônios , Animais , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Hipocampo/metabolismo , Humanos , Camundongos , Imagem Molecular/métodos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(52): 33586-33596, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376223

RESUMO

Current proteomic studies clarified canonical synaptic proteins that are common to many types of synapses. However, proteins of diversified functions in a subset of synapses are largely hidden because of their low abundance or structural similarities to abundant proteins. To overcome this limitation, we have developed an "ultra-definition" (UD) subcellular proteomic workflow. Using purified synaptic vesicle (SV) fraction from rat brain, we identified 1,466 proteins, three times more than reported previously. This refined proteome includes all canonical SV proteins, as well as numerous proteins of low abundance, many of which were hitherto undetected. Comparison of UD quantifications between SV and synaptosomal fractions has enabled us to distinguish SV-resident proteins from potential SV-visitor proteins. We found 134 SV residents, of which 86 are present in an average copy number per SV of less than one, including vesicular transporters of nonubiquitous neurotransmitters in the brain. We provide a fully annotated resource of all categorized SV-resident and potential SV-visitor proteins, which can be utilized to drive novel functional studies, as we characterized here Aak1 as a regulator of synaptic transmission. Moreover, proteins in the SV fraction are associated with more than 200 distinct brain diseases. Remarkably, a majority of these proteins was found in the low-abundance proteome range, highlighting its pathological significance. Our deep SV proteome will provide a fundamental resource for a variety of future investigations on the function of synapses in health and disease.


Assuntos
Encéfalo/metabolismo , Mamíferos/metabolismo , Proteoma/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Proteoma/química , Proteômica , Ratos Sprague-Dawley , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo
3.
J Inherit Metab Dis ; 45(6): 1059-1069, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35866457

RESUMO

Patients with urea cycle disorders intermittently develop episodes of decompensation with hyperammonemia. Although such an episode is often associated with starvation and catabolism, its molecular basis is not fully understood. First, we attempted to elucidate the mechanism of such starvation-associated hyperammonemia. Using a mouse embryonic fibroblast (MEF) culture system, we found that glucose starvation increases ammonia production, and that this increase is associated with enhanced glutaminolysis. These results led us to focus on α-ketoglutarate (AKG), a glutamate dehydrogenase inhibitor, and a major anaplerotic metabolite. Hence, we sought to determine the effect of dimethyl α-ketoglutarate (DKG), a cell-permeable AKG analog, on MEFs and found that DKG mitigates ammonia production primarily by reducing flux through glutamate dehydrogenase. We also verified that DKG reduces ammonia in an NH4 Cl-challenged hyperammonemia mouse model and observed that DKG administration reduces plasma ammonia concentration to 22.8% of the mean value for control mice that received only NH4 Cl. In addition, we detected increases in ornithine concentration and in the ratio of ornithine to arginine following DKG treatment. We subsequently administered DKG intravenously to a newborn pig with hyperammonemia due to ornithine transcarbamylase deficiency and found that blood ammonia concentration declined significantly over time. We determined that this effect is associated with facilitated reductive amination and glutamine synthesis. Our present data indicate that energy starvation triggers hyperammonemia through enhanced glutaminolysis and that DKG reduces ammonia accumulation via pleiotropic mechanisms both in vitro and in vivo. Thus, cell-permeable forms of AKG are feasible candidates for a novel hyperammonemia treatment.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Camundongos , Animais , Suínos , Hiperamonemia/tratamento farmacológico , Hiperamonemia/metabolismo , Glutamina/metabolismo , Amônia , Glutamato Desidrogenase , Fibroblastos/metabolismo , Ornitina
4.
Medicina (Kaunas) ; 58(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36143828

RESUMO

Here, we report two cases of patients with interstitial pneumonia (IP) on steroids who developed Pneumocystis jirovecii pneumonia (PJP) following coronavirus disease 2019 (COVID-19) infection. Case 1: A 69-year-old man on 10 mg of prednisolone (PSL) daily for IP developed new pneumonia shortly after his COVID-19 infection improved and was diagnosed with PJP based on chest computed tomography (CT) findings and elevated serum ß-D-glucan levels. Trimethoprim-sulfamethoxazole (TMP-SMZ) was administered, and the pneumonia resolved. Case 2: A 70-year-old woman taking 4 mg/day of PSL for IP and rheumatoid arthritis developed COVID-19 pneumonia, which resolved mildly, but her pneumonia flared up and was diagnosed as PJP based on CT findings, elevated ß-D-glucan levels, and positive polymerase chain reaction for P. jirovecii DNA in the sputum. The autopsy revealed diffuse alveolar damage, increased collagen fiver and fibrotic foci, mucinous component accumulation, and the presence of a P. jirovecii cyst. In conclusion, steroids and immunosuppressive medications are well-known risk factors for PJP. Patients with IP who have been taking these drugs for a long time are frequently treated with additional steroids for COVID-19; thus, PJP complications should be avoided in such cases.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Pneumocystis carinii , Pneumonia por Pneumocystis , Idoso , COVID-19/complicações , Feminino , Glucanos/uso terapêutico , Humanos , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/tratamento farmacológico , Masculino , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/complicações , Pneumonia por Pneumocystis/tratamento farmacológico , Prednisolona/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
5.
J Neurosci ; 40(21): 4103-4115, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32327530

RESUMO

Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.SIGNIFICANCE STATEMENT Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca2+ channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Tronco Encefálico/efeitos dos fármacos , Isoflurano/administração & dosagem , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
6.
J Neurosci ; 40(1): 131-142, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31767677

RESUMO

Cytoskeletal filaments such as microtubules (MTs) and filamentous actin (F-actin) dynamically support cell structure and functions. In central presynaptic terminals, F-actin is expressed along the release edge and reportedly plays diverse functional roles, but whether axonal MTs extend deep into terminals and play any physiological role remains controversial. At the calyx of Held in rats of either sex, confocal and high-resolution microscopy revealed that MTs enter deep into presynaptic terminal swellings and partially colocalize with a subset of synaptic vesicles (SVs). Electrophysiological analysis demonstrated that depolymerization of MTs specifically prolonged the slow-recovery time component of EPSCs from short-term depression induced by a train of high-frequency stimulation, whereas depolymerization of F-actin specifically prolonged the fast-recovery component. In simultaneous presynaptic and postsynaptic action potential recordings, depolymerization of MTs or F-actin significantly impaired the fidelity of high-frequency neurotransmission. We conclude that MTs and F-actin differentially contribute to slow and fast SV replenishment, thereby maintaining high-frequency neurotransmission.SIGNIFICANCE STATEMENT The presence and functional role of MTs in the presynaptic terminal are controversial. Here, we demonstrate that MTs are present near SVs in calyceal presynaptic terminals and that MT depolymerization specifically prolongs the slow-recovery component of EPSCs from short-term depression. In contrast, F-actin depolymerization specifically prolongs fast-recovery component. Depolymerization of MT or F-actin has no direct effect on SV exocytosis/endocytosis or basal transmission, but significantly impairs the fidelity of high-frequency transmission, suggesting that presynaptic cytoskeletal filaments play essential roles in SV replenishment for the maintenance of high-frequency neurotransmission.


Assuntos
Citoesqueleto de Actina/fisiologia , Exocitose/fisiologia , Microtúbulos/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Actinas/fisiologia , Animais , Vias Auditivas/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Tiazolidinas/farmacologia , Corpo Trapezoide/fisiologia , Vimblastina/farmacologia
7.
Biochem Biophys Res Commun ; 541: 78-83, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33482579

RESUMO

Human pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, have the potential to differentiate into a wide variety of cells in vitro and have applications in basic developmental biology research and regenerative medicine. To understand the process of differentiation from pluripotent stem cells to functional cells, it is necessary to efficiently and safely transfer and express exogenous genes. We attempted to optimize the efficient transfer of genes into pluripotent stem cells using adenoviral vectors. Comparative study of the activities of three representative ubiquitously active promoters revealed that only the CA promoter allowed robust transgene expression in human pluripotent stem cells. In addition, we established a protocol that allowed us to efficiently introduce target genes and ensure their expression even in small numbers of cells. Adenoviral vector infection of pluripotent stem cells in single-cell suspension culture yielded high gene transfer efficiency with low cytotoxicity, without losing the undifferentiated state of the pluripotent stem cells. This optimized system will facilitate developmental biology research and regenerative medicine using pluripotent stem cells.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes/normas , Vetores Genéticos/genética , Células-Tronco Pluripotentes/metabolismo , Adenoviridae/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética
8.
Mol Phylogenet Evol ; 154: 106984, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059064

RESUMO

Talitrids are a highly diverse group of amphipod crustaceans that have colonized various terrestrial habitats. Three genera have successfully adapted to cave habitats on islands in the Pacific and Atlantic Oceans. However, the evolutionary origin of the Pacific troglobitic talitrids has remained unknown. We estimate the phylogenetic position of the troglobitic Minamitalitrus zoltani, which inhabits limestone caves on Minamidaito Island in the Northwestern Pacific, on the basis of the traditional multi-locus dataset. For the analyzed talitrids, we also reconstruct ancestral states of the maxilliped palp and male gnathopod 2. Our results indicate that Minamitalitrus zoltani is sister to the epigean Nipponorchestia curvatus with a deep divergence. Nipponorchestia curvatus inhabits coastal habitats in Japan, but is not indigenous to Minamidaito Island. A previous study estimated that the Atlantic troglobitic species had invaded subterranean habitats multiple times, but we provide new insight into the troglobisation history in talitrids. We also recover secondary shifts of character states of the maxilliped palp and male gnathopod 2 within the lineage composed of Minamitalitrus and its phylogenetically close genera. Our findings highlight the need for the genus-level reclassification of these genera; we split Nipponorchestia into two genera, establishing a new genus for Nipponorchestia nudiramus.


Assuntos
Anfípodes/classificação , Cavernas , Filogenia , Animais , Teorema de Bayes , Ecossistema , Evolução Molecular , Japão , Masculino
9.
J Neurosci ; 37(25): 6043-6052, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28576942

RESUMO

α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission.SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal.


Assuntos
Vias Auditivas/efeitos dos fármacos , Vias Auditivas/metabolismo , Endocitose/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/toxicidade , Animais , Exocitose/efeitos dos fármacos , Exocitose/genética , Feminino , Humanos , Masculino , Mutação/genética , Nocodazol/farmacologia , Polimerização , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/genética , alfa-Sinucleína/genética
10.
J Neurosci ; 36(12): 3600-10, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013688

RESUMO

Giant presynaptic terminal brain slice preparations have allowed intracellular recording of electrical signals and molecular loading, elucidating cellular and molecular mechanisms underlying neurotransmission and modulation. However, molecular genetic manipulation or optical imaging in these preparations is hampered by factors, such as tissue longevity and background fluorescence. To overcome these difficulties, we developed a giant presynaptic terminal culture preparation, which allows genetic manipulation and enables optical measurements of synaptic vesicle dynamics, simultaneously with presynaptic electrical signal recordings. This giant synapse reconstructed from dissociated mouse brainstem neurons resembles the development of native calyceal giant synapses in several respects. Thus, this novel preparation constitutes a powerful tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development. SIGNIFICANCE STATEMENT: We have developed a novel culture preparation of giant mammalian synapses. These presynaptic terminals make it possible to perform optical imaging simultaneously with presynaptic electrophysiological recording. We demonstrate that this enables one to dissect endocytic and acidification times of synaptic vesicles. In addition, developmental elimination and functional maturation in this cultured preparation provide a useful model for studying presynaptic development. Because this giant synapse preparation allows molecular genetic manipulations, it constitutes a powerful new tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Microscopia/métodos , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Células Cultivadas , Camundongos , Imagem Molecular/métodos
11.
J Physiol ; 595(4): 1263-1271, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27801501

RESUMO

KEY POINTS: It is controversial whether glutamate can leak out of vesicles in the nerve terminal. To address this issue, we abolished vesicular glutamate uptake by washing out presynaptic cytosolic glutamate or by blocking vacuolar ATPase activity using bafilomycin A1. In the absence of vesicular glutamate uptake, both spontaneous and nerve-evoked EPSCs underwent a rundown, suggesting that vesicular glutamate can leak out of vesicles. However, the rundown of evoked EPSCs was caused mainly by accumulation of unfilled vesicles after exocytic release of glutamate, suggesting a minor influence of glutamate leakage on synaptic transmission. ABSTRACT: Glutamate leaks out of synaptic vesicles when the transvesicular proton gradient is dissipated in isolated vesicle preparations. In the nerve terminal, however, it is controversial whether glutamate can leak out of vesicles. To address this issue, we abolished vesicular glutamate uptake by washing out presynaptic cytosolic glutamate in whole-cell dialysis or by blocking vacuolar ATPase using bafilomycin A1 (Baf) at the calyx of Held in mouse brainstem slices. Presynaptic glutamate washout or Baf application reduced the mean amplitude and frequency of spontaneous miniature (m)EPSCs and the mean amplitude of EPSCs evoked every 10 min. The percentage reduction of mEPSC amplitude was much less than that of EPSC amplitude or mEPSC frequency, and tended to reach a plateau. The mean amplitude of mEPSCs after glutamate washout or Baf application remained high above the detection limit, deduced from the reduction of mEPSC amplitude by the AMPA receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione. Membrane capacitance measurements from presynaptic terminals indicated no effect of glutamate washout on exocytosis or endocytosis of synaptic vesicles. We conclude that glutamate can leak out of vesicles unless it is continuously taken up from presynaptic cytosol. However, the magnitude of glutamate leakage was small and had only a minor effect on synaptic responses. In contrast, prominent rundowns of EPSC amplitude and mEPSC frequency observed after glutamate washout or Baf application are likely to be caused by accumulation of unfilled vesicles in presynaptic terminals retrieved after spontaneous and evoked glutamate release.


Assuntos
Endocitose , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos em Miniatura , Vesículas Sinápticas/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(10): E914-23, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567380

RESUMO

Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August-September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions.


Assuntos
Radioisótopos de Césio/análise , Exposição Ambiental/análise , Acidente Nuclear de Fukushima , Neoplasias/epidemiologia , Doses de Radiação , Monitoramento de Radiação/estatística & dados numéricos , Previsões , Geografia , Humanos , Japão/epidemiologia , Fatores de Risco
13.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27317580

RESUMO

BACKGROUND: Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated ß-arrestin recruitment. RESULTS: We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of ß-arrestin-2 in µ-opioid receptor-overexpressing cells. CONCLUSIONS: These results suggest that methadone may, at least partly, produce its pharmacological effect as a ß-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone.


Assuntos
Metadona/farmacologia , Receptores Opioides mu/agonistas , beta-Arrestinas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Maleato de Dizocilpina/farmacologia , Endocitose/efeitos dos fármacos , Fentanila/farmacologia , Trânsito Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Nociceptividade/efeitos dos fármacos , Ratos Endogâmicos F344 , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Genes Cells ; 20(12): 992-1005, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456390

RESUMO

Methyl-CpG-binding protein 2 (Mecp2) is an X-linked gene encoding a methylated DNA-binding nuclear protein which regulates transcriptional activity. The mutation of MECP2 in humans is associated with Rett syndrome (RTT), a neurodevelopmental disorder. Patients with RTT frequently show abnormal sleep patterns and sleep-associated problems, in addition to autistic symptoms, raising the possibility of circadian clock dysfunction in RTT. In this study, we investigated circadian clock function in Mecp2-deficient mice. We successfully generated both male and female Mecp2-deficient mice on the wild-type C57BL/6 background and PER2(Luciferase) (PER2(Luc)) knock-in background using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Generated Mecp2-deficient mice recapitulated reduced activity in mouse models of RTT, and their activity rhythms were diminished in constant dark conditions. Furthermore, real-time bioluminescence imaging showed that the amplitude of PER2(Luc)-driven circadian oscillation was significantly attenuated in Mecp2-deficient SCN neurons. On the other hand, in vitro circadian rhythm development assay using Mecp2-deficient mouse embryonic stem cells (ESCs) did not show amplitude changes of PER2(Luc) bioluminescence rhythms. Together, these results show that Mecp2 deficiency abrogates the circadian pacemaking ability of the SCN, which may be a therapeutic target to treat the sleep problems of patients with RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Circadianas Period/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Núcleo Supraquiasmático/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Circadianas Period/metabolismo , Síndrome de Rett/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-26194855

RESUMO

Classically, the basic concept of chemical synaptic transmission was established at the frog neuromuscular junction, and direct intracellular recordings from presynaptic terminals at the squid giant presynaptic terminal have further clarified principles of neurotransmitter release. More recently, whole-cell patch-camp recordings from the calyx of Held in rodent brainstem slices have extended the classical concept to mammalian synapses providing new insights into the mechanisms underlying strength and precision of neurotransmission and developmental changes therein. This review summarizes findings from our laboratory and others on these subjects, mainly at the calyx of Held, with a particular focus on precise, high-fidelity, fast neurotransmission. The mechanisms by which presynaptic terminals acquire strong, precise neurotransmission during postnatal development are also discussed.


Assuntos
Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Crescimento e Desenvolvimento/fisiologia , Humanos , Probabilidade
16.
J Neurosci ; 33(48): 18755-63, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285882

RESUMO

At the nerve terminal, neurotransmitter release is triggered by Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs). During postnatal development, VGCC subtypes in the nerve terminal switch at many synapses. In immature rodent cerebella, N-type and P/Q-type VGCCs mediate GABAergic neurotransmission from Purkinje cells (PCs) to deep nuclear cells, but as animals mature, neurotransmission becomes entirely P/Q-type dependent. We reproduced this developmental switch in rat cerebellar slice culture to address the underlying mechanism. Chronic block of cerebellar neuronal activity with tetrodotoxin (TTX) in slice culture, or in vivo, reversed the switch, leaving neurotransmission predominantly N-type channel-dependent. Brain-derived neurotrophic factor or neurotrophin-4 rescued this TTX effect, whereas pharmacological blockade of neurotrophin receptors mimicked the TTX effect. In PC somata, unlike in presynaptic terminals, TTX had no effect on the proportion of Ca(2+) channel subtype currents. We conclude that neuronal activity activates the neurotrophin-TrkB signaling pathway, thereby causing the N-to-P/Q channel switch in presynaptic terminals.


Assuntos
Canais de Cálcio/fisiologia , Fatores de Crescimento Neural/fisiologia , Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia , Anestésicos Locais/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio Tipo P/fisiologia , Canais de Cálcio Tipo Q/fisiologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Vetores Genéticos , Imuno-Histoquímica , Técnicas In Vitro , Lentivirus/genética , Masculino , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Terminações Nervosas/fisiologia , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tetrodotoxina/farmacologia
17.
J Neurosci ; 33(29): 12099-104, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864695

RESUMO

Rho-kinase plays diverse roles in cell motility. During neuronal development, Rho-kinase is involved in neuronal migration, and in neurite outgrowth and retraction. Rho-kinase remains highly expressed in mature neurons, but its physiological roles are poorly understood. Here we report that Rho-kinase plays a key role in the synaptic vesicle recycling system in presynaptic terminals. Vesicles consumed by excessive exocytosis are replenished by accelerating vesicle endocytosis via a retrograde feedback mechanism involving nitric oxide released from postsynaptic cells. This homeostatic control system involves presynaptic cyclic GMP-dependent protein kinase (PKG) and a plasma membrane phospholipid, phosphatidylinositol-4,5-bisphophate (PIP2). We found that application of a Rho-kinase inhibitor, a PKG inhibitor or both, reduced the PIP2 content in Wistar rat brainstem synaptosomes to a similar extent. Likewise, application of the Rho-kinase inhibitor into the calyx of Held presynaptic terminal slowed vesicle endocytosis to the same degree as did application of the PKG inhibitor. This endocytic slowing effect of the Rho-kinase inhibitor was canceled by coapplication of PIP2 into the terminal. By contrast, a RhoA activator increased the PIP2 content and reversed the effect of the PKG inhibitor in brainstem synaptosomes. The RhoA activator, when loaded into calyceal terminals, also rescued the endocytic slowing effect of the PKG inhibitor. Furthermore, intraterminal loading of anti-PIP2 antibody slowed vesicle endocytosis and blocked the rescuing effect of the RhoA activator. We conclude that Rho-kinase links presynaptic PKG activity to PIP2 synthesis, thereby controlling the homeostatic balance of vesicle exocytosis and endocytosis in nerve terminals.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endocitose/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Vesículas Sinápticas/metabolismo , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
18.
Elife ; 122024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829367

RESUMO

After exocytosis, release sites are cleared of vesicular residues to replenish with transmitter-filled vesicles. Endocytic and scaffold proteins are thought to underlie this site-clearance mechanism. However, the physiological significance of this mechanism at diverse mammalian central synapses remains unknown. Here, we tested this in a physiologically optimized condition using action potential evoked EPSCs at fast calyx synapse and relatively slow hippocampal CA1 synapse, in post-hearing mice brain slices at 37°C and in 1.3 mM [Ca2+]. Pharmacological block of endocytosis enhanced synaptic depression at the calyx synapse, whereas it attenuated synaptic facilitation at the hippocampal synapse. Block of scaffold protein activity likewise enhanced synaptic depression at the calyx but had no effect at the hippocampal synapse. At the fast calyx synapse, block of endocytosis or scaffold protein activity significantly enhanced synaptic depression as early as 10 ms after the stimulation onset. Unlike previous reports, neither endocytic blockers nor scaffold protein inhibitors prolonged the recovery from short-term depression. We conclude that the release-site clearance by endocytosis can be a universal phenomenon supporting vesicle replenishment at both fast and slow synapses, whereas the presynaptic scaffold mechanism likely plays a specialized role in vesicle replenishment predominantly at fast synapses.


Assuntos
Endocitose , Vesículas Sinápticas , Endocitose/fisiologia , Animais , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinapses/fisiologia , Hipocampo/fisiologia , Exocitose , Região CA1 Hipocampal/fisiologia
19.
Brain Res ; 1838: 148987, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718851

RESUMO

Dynamin is a microtubule (MT) binding protein playing a key role in vesicle endocytosis. In a brain slice model, tau loaded in presynaptic terminals assembles MTs, thereby impairing vesicle endocytosis via depletion of cytosolic dynamin. The peptide PHDP5, derived from the pleckstrin homology domain of dynamin 1, inhibits dynamin-MT interaction and rescues endocytosis and synaptic transmission impaired by tau when co-loaded in presynaptic terminals. We tested whether in vivo administration of PHDP5 could rescue the learning/memory deficits observed in Alzheimer's disease (AD) model mice. A modified PHDP5 incorporating a cell-penetrating peptide (CPP) and a FITC fluorescent marker was delivered intranasally to Tau609 transgenic (Tg) and 3xTg-AD mice. FITC-positive puncta were observed in the hippocampus of mice infused with PHDP5 or scrambled (SPHDP5) peptide, but not in saline-infused controls. In the Morris water maze (MWM) test for spatial learning/memory, AD model mice treated with FITC-PHDP5-CPP showed prominent improvements in learning and memory, performing close to the level of saline-infused WT mice control. In contrast, mice treated with a scrambled construct (FITC-SPHDP5-CPP) showed no significant improvement. We conclude that PHDP5 can be a candidate for human AD therapy.


Assuntos
Doença de Alzheimer , Transtornos da Memória , Aprendizagem Espacial , Animais , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Proteínas tau/metabolismo , Dinamina I/metabolismo
20.
iScience ; 27(4): 109515, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591010

RESUMO

Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa