Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes Cells ; 29(1): 52-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963646

RESUMO

Glyoxalase I (GLO I), a major enzyme involved in the detoxification of the anaerobic glycolytic byproduct methylglyoxal, is highly expressed in various tumors, and is regarded as a promising target for cancer therapy. We recently reported that piceatannol potently inhibits human GLO I and induces the death of GLO I-dependent cancer cells. Pyruvate kinase M2 (PKM2) is also a potential therapeutic target for cancer treatment, so we evaluated the combined anticancer efficacy of piceatannol plus low-dose shikonin, a potent and specific plant-derived PKM2 inhibitor, in two GLO I-dependent cancer cell lines, HL-60 human myeloid leukemia cells and NCI-H522 human non-small-cell lung cancer cells. Combined treatment with piceatannol and low-dose shikonin for 48 h synergistically reduced cell viability, enhanced apoptosis rate, and increased extracellular methylglyoxal accumulation compared to single-agent treatment, but did not alter PKM1, PKM2, or GLO I protein expression. Taken together, these results indicate that concomitant use of low-dose shikonin potentiates piceatannol-induced apoptosis of GLO I-dependent cancer cells by augmenting methylglyoxal accumulation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lactoilglutationa Liase , Neoplasias Pulmonares , Humanos , Aldeído Pirúvico , Apoptose , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral
2.
Bioorg Med Chem Lett ; : 129886, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996938

RESUMO

(+)-Plakevulin A (1), an oxylipin isolated from an Okinawan sponge Plakortis sp. inhibits enzymatic inhibition of DNA polymerases (pols) α and δ and exhibits cytotoxicity against murine leukemia (L1210) and human cervix carcinoma (KB) cell lines. However, the half-maximal inhibitory concentration (IC50) value for cytotoxicity significantly differed from those observed for the enzymatic inhibition of pols α and ß, indicating the presence of target protein(s) other than pols. This study demonstrated cytotoxicity against human promyelocytic leukemia (HL60), human cervix epithelioid carcinoma (HeLa), mouse calvaria-derived pre-osteoblast (MC3T3-E1), and human normal lung fibroblast (MRC-5) cell lines. This compound had selectivity to cancer cells over normal ones. Among these cell lines, HL60 exhibited the highest sensitivity to (+)-plakevulin A. (+)-Plakevulin A induced DNA fragmentation and caspase-3 activation in HL60 cells, indicating its role in apoptosis induction. Additionally, hydroxysteroid 17-ß dehydrogenase 4 (HSD17B4) was isolated from the HL60 lysate as one of its binding proteins through pull-down experiments using its biotinylated derivative and neutravidin-coated beads. Moreover, (+)-plakevulin A suppressed the activation of interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3). Because the knockdown or inhibition of STAT3 induces apoptosis and HSD17B4 regulates STAT3 activation, (+)-plakevulin A may induce apoptosis in HL60 cell lines by suppressing STAT3 activation, potentially by binding to HSD17B4. The present findings provide valuable information for the mechanism of its action.

3.
Synapse ; 75(3): e22188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979223

RESUMO

Extracellular high-mobility group box 1 (HMGB1) is known to mediate the inflammatory response through pattern recognition receptors, including the receptor for advanced glycation end products (RAGE) or the toll-like receptors (TLRs). The aim of the present study was to investigate whether papaverine, a novel RAGE inhibitor, could suppress inflammatory pain in mice after several time points, which was induced by the injection of complete Freund's adjuvant (CFA). We also investigated the influence of redox modulation during a state of chronic inflammatory pain. Although papaverine did not suppress CFA-induced mechanical allodynia on Day 7, papaverine significantly suppressed CFA-induced mechanical allodynia on Days 14 and 28. In contrast, the radical scavenger N-tert-Butyl-α-phenylnitrone (PBN) suppressed mechanical allodynia in mice on Days 7 and 14, but not on Day 28. We demonstrated that the RAGE inhibitor improves mechanical allodynia in chronic inflammatory conditions. Moreover, we also found that high levels of reactive oxygen species (ROS) contributed to the early phase of CFA-induced mechanical allodynia. Precisely, lower ROS levels contributed to the inflammatory pain response via the all-thiol HMGB1/RAGE signaling pathway during the chronic state. These findings led us to propose that ROS levels modulate RAGE and/or TLR4-mediated inflammatory allodynia by regulating the concentrations of disulfide HMGB1 or all-thiol HMGB1.


Assuntos
Dor , Papaverina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Camundongos , Papaverina/farmacologia , Papaverina/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/metabolismo
4.
Bioorg Med Chem Lett ; 40: 127918, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711442

RESUMO

Glyoxalase I (GLO I) is a known therapeutic target in cancer. Even though TLSC702, a GLO I inhibitor that we discovered, induces apoptosis in tumor cells, exceptionally higher doses are required compared with those needed to inhibit GLO I activity in vitro. In this work, structure-activity optimization studies were conducted on four sections of the TLSC702 molecule to determine the partial structural features necessary for the inhibition of GLO I. Herein, we found that the carboxy group in TLSC702 was critical for binding with the divalent zinc at the active site of GLO I. In contrast, the side chain substituents in the meta- and para- positions of the benzene ring had little influence on the in vitro inhibition of GLO I. The CLogP values of the TLSC702 derivatives showed a positive correlation with the antiproliferative effects on NCI-H522 cells. Thus, two derivatives of TLSC702, which displayed either high or low lipophilicity due to the types of substituents at the phenyl position, were selected. Even though both derivatives showed comparable inhibitory effects as that of their parent compound, the derivative with the high CLogP value was distinctly more antiproliferative than TLSC702. In contrast, the derivative with the low CLogP value did not decrease cell viability in NCI-H522 and HL-60 cells. These findings suggested that structural improvements, such as the addition of hydrophobic moieties to the phenyl group, enhanced the ability of TLSC702 to induce apoptosis by increasing cell membrane permeability.


Assuntos
Butiratos/química , Inibidores Enzimáticos/química , Lactoilglutationa Liase/antagonistas & inibidores , Tiazóis/química , Apoptose/efeitos dos fármacos , Benzeno/química , Butiratos/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Glutationa/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ligação Proteica , Aldeído Pirúvico/química , Relação Estrutura-Atividade , Tiazóis/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769192

RESUMO

Transforming growth factor-ß1 (TGF-ß1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-ß1. Bovine aortic endothelial cells in a culture system were treated with TGF-ß1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-ß1, induction of RSS-producing enzymes by TGF-ß1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-ß1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine ß-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-ß1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-ß1, may modulate the regulation activity in vascular endothelial cells.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Enxofre/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Bovinos , Linhagem Celular , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Células Endoteliais/citologia , Expressão Gênica , Humanos , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Regulação para Cima
6.
Biochem Biophys Res Commun ; 511(3): 665-670, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826057

RESUMO

The interaction of high mobility group box 1 (HMGB1), which is secreted from immune and dying cells during cellular infection and injury, and receptor for advanced glycation end-products (RAGE) appears to be critical for acute and chronic inflammatory disorders. Here we designed a unique cyclic ß-hairpin peptide (Pepb2), which mimics the predicted RAGE-binding domain of HMGB1. Pepb2 competitively inhibited HMGB1/RAGE interaction. We then identified papaverine as a Pepb2 mimetic by in silico 3D-structural similarity screening from the DrugBank library. Papaverine was found to directly inhibit HMGB1/RAGE interaction. It also suppressed the HMGB1-mediated production of pro-inflammatory cytokines, IL-6 and TNF-α, in mouse macrophage-like RAW264.7 cells and bone marrow-derived macrophages. In addition, papaverine attenuated mortality in cecal ligation puncture-induced sepsis model mice. Taken together, these findings indicate that papaverine could become a useful therapeutic against HMGB1/RAGE-mediated sepsis and other inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Inflamação/tratamento farmacológico , Papaverina/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Feminino , Proteína HMGB1/imunologia , Inflamação/complicações , Inflamação/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/imunologia , Sepse/complicações , Sepse/imunologia , Fator de Necrose Tumoral alfa/imunologia
7.
Bioorg Med Chem Lett ; 29(11): 1390-1394, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935798

RESUMO

The antibacterial and cytotoxic activity of seven racemic lactams and both enantiomers of flavipucine were evaluated. Of the compounds tested in this study, flavipucine and phenylflavipucine displayed bactericidal activity against Bacillus subtilis. These results indicate that the pyridione epoxide moiety is a pharmacophore for antibacterial activity against B. subtilis. Flavipucine showed cytotoxic activity against several cancer cells. The cytotoxic activity of flavipucine against human leukemia HL-60 cells is as strong as that of SN-38, the active metabolite of irinotecan. In contrast, the cytotoxic activity of flavipucine against nonneoplastic HEK293 cells and human normal MRC-5 cells is weaker than that of SN-38. No significant differences in the biological activity of the racemates or enantiomers of flavipucine were observed.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridonas/síntese química , Piridonas/química , Piridonas/farmacologia , Relação Estrutura-Atividade
8.
Arch Biochem Biophys ; 638: 1-7, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29225125

RESUMO

Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Lactoilglutationa Liase/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Piruvato Quinase/metabolismo , Hormônios Tireóideos/metabolismo , Butiratos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Naftoquinonas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Ácido Pirúvico/metabolismo , Tiazóis/farmacologia , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
9.
Bioorg Med Chem Lett ; 27(5): 1169-1174, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169168

RESUMO

Human glyoxalase I (GLO I), a rate-limiting enzyme for detoxification of methylglyoxal (MG), a by-product of glycolysis, is known to be a potential therapeutic target for cancer. Here, we searched new scaffolds from natural compounds for designing novel GLO I inhibitors and found trans-stilbene scaffold. We examined the inhibitory abilities to human GLO I of commercially available trans-stilbene compounds. Among them, piceatannol was found to have the most potent inhibitory activity against human GLO I. Piceatannol could inhibit the proliferation of human lung cancer NCI-H522 cells, which are dependent on GLO I for survival, in a dose- and time-dependent manner. In addition, piceatannol more significantly inhibited the proliferation of NCI-H522 cells than that of NCI-H460 cells, which are less dependent on GLO I. Importantly, overexpression of GLO I in NCI-H522 cells resulted in less sensitive to the antiproliferative activity of piceatannol. Taken together, this is the first report demonstrating that piceatannol inhibits GLO I activity and the GLO I-dependent proliferation of cancer cells. Furthermore, we determined a pharmacophore for novel inhibitors of human GLO I by computational simulation analyses of the binding mode of piceatannol to the enzyme hot spot in the active site. We suggest that piceatannol is a possible lead compound for the development of novel GLO I inhibitory anticancer drugs.


Assuntos
Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Estilbenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia
10.
Biol Pharm Bull ; 39(5): 869-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150153

RESUMO

Human glyoxalase I (hGLO I) is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), which is the side product of tumor-specific aerobic glycolysis. GLO I has been reported to be overexpressed in various types of cancer cells, and has been expected as an attractive target for the development of new anticancer drugs. We previously discovered a novel inhibitor of hGLO I, named TLSC702, by our in silico screening method. Here, we show that TLSC702 inhibits the proliferation of human leukemia HL-60 cells and induces apoptosis in a dose-dependent manner. In addition, TLSC702 more significantly inhibits the proliferation of human lung cancer NCI-H522 cells, which highly express GLO I, than that of GLO I lower-expressing human lung cancer NCI-H460 cells. Furthermore, this antiproliferative effect of TLSC702 on NCI-H522 cells is in a dose- and time-dependent manner. These results suggest that TLSC702 can induce apoptosis in tumor cells by GLO I inhibition, which lead to accumulation of MG. Taken together, TLSC702 could become a unique seed compound for the generation of novel chemotherapeutic drugs targeting GLO I-dependent human tumors.


Assuntos
Antineoplásicos/farmacologia , Butiratos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Tiazóis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Humanos
11.
FEBS Lett ; 596(11): 1458-1467, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35363883

RESUMO

Human glyoxalase I (hGLO I) is an enzyme for detoxification of methylglyoxal (MG) and has been considered an attractive target for the development of new anticancer drugs. In our previous report, the GLO I inhibitor TLSC702 induced apoptosis in tumor cells. Here, we determined the crystal structures of hGLO I and its complex with TLSC702. In the complex, the carboxyl O atom of TLSC702 is coordinated to Zn2+ , and TLSC702 mainly shows van der Waals interaction with hydrophobic residues. In the inhibitor-unbound structure, glycerol, which has similar functional groups to MG, was bound to Zn2+ , indicating that GLO I can easily bind to MG. This study provides a structural basis to develop better anticancer drugs.


Assuntos
Antineoplásicos , Lactoilglutationa Liase , Antineoplásicos/farmacologia , Butiratos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Lactoilglutationa Liase/química , Lactoilglutationa Liase/metabolismo , Tiazóis
12.
J Toxicol Sci ; 47(12): 539-546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36450498

RESUMO

Organobismuth compounds, i.e., organic-inorganic hybrid molecules composed of an organic structure and bismuth metal, have been reported to induce cytotoxicity in cancer cells; however, the target proteins associated with this cytotoxicity have not been elucidated. Herein, we investigated the inhibitory effect of five organobismuth compounds on human glyoxalase I (hGLO I), a promising target candidate for cancer therapy. Among these compounds, triphenylbismuth dichloride (Bi-05) exerted a strong inhibitory effect on hGLO I. Indeed, Bi-05 inhibited hGLO I in a dose-dependent manner with an IC50 value of 0.18 µM. Bi-05 also induced cytotoxicity in human leukemia HL-60 cells and human lung cancer NCI-H522 cells, both of which exhibit high expression levels of GLO I. However, the hGLO I-inhibiting and cytotoxic effects of Bi-05 disappeared when the bismuth atom was replaced with an antimony or phosphorus atom. Bismuth(III) nitrate had little inhibitory effect on hGLO I activity and only slightly reduced the viability of cancer cells. In the culture medium of Bi-05-treated HL-60 cells, the concentration of the GLO I substrate methylglyoxal was markedly elevated. In addition, Bi-05 treatment more strongly inhibited human lung cancer NCI-H522 cell (exhibiting high GLO I expression) proliferation than human lung cancer NCI-H460 cell (exhibiting low GLO I expression) proliferation. Furthermore, the cytotoxicity of Bi-05 was significantly decreased by pre- and co-treatment with the methylglyoxal scavengers N-acetyl-L-cysteine and aminoguanidine. Overall, these results suggest that Bi-05 treatment leads to the accumulation of methylglyoxal via GLO I inhibition, resulting in cytotoxic effects in cancer cells.


Assuntos
Lactoilglutationa Liase , Neoplasias Pulmonares , Humanos , Aldeído Pirúvico/toxicidade , Bismuto , Células HL-60
13.
Arch Biochem Biophys ; 506(2): 188-93, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21093407

RESUMO

High mobility group box 1 (HMGB1) initially identified as a non-histone chromosomal protein, which mainly functions as chromatin structure and transcriptional regulation, has been recently reported to be secreted into extracellular milieu in necrosis and apoptosis, and act as a proinflammatory mediator. However, the mechanism by which apoptotic cells release HMGB1 is not clear. In this study, we found that staurosporine (apoptosis-inducer)-induced HMGB1 release was associated with nucleosomal DNA fragmentation catalyzed by caspase-activated DNase (CAD) in WEHI-231 cells. Importantly, this event was effectively attenuated by the treatment of a pan-caspase inhibitor, Z-VAD-fmk, and by the inhibition of CAD-mediated DNA fragmentation by the expression of caspase-resistant inhibitor of CAD (ICAD-CR). In WEHI-231/ICAD-CR and WEHI-231/Puro cells, DNase γ-catalyzed nucleosomal DNA fragmentation occurred by anti-IgM antibody treatment was critical for HMGB1 release. Furthermore, in DNase γ stably-expressing HeLa S3 cells (HeLa S3/γ), the release of HMGB1 accompanied with nucleosomal DNA fragmentation was more apparent than that in parental HeLa S3 cells in which DNA fragmentation was scarcely observed. Taken together, these date suggest that nucleosomal DNA fragmentation catalyzed by CAD or DNase γ plays a pivotal role in HMGB1 release.


Assuntos
Apoptose/fisiologia , Fragmentação do DNA , Proteína HMGB1/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Camundongos , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacologia
14.
Bioorg Med Chem Lett ; 21(14): 4337-42, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21669529

RESUMO

The human glyoxalase I (hGLO I), which is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), has been expected as an attractive target for the development of new anti-cancer drugs. We have previously identified a natural compound myricetin as a substrate transition-state (Zn(2+)-bound MG-glutathione (GSH) hemithioacetal) mimetic inhibitor of hGLO I. Here, we constructed a hGLO I/inhibitor 4-point pharmacophore based on the binding mode of myricetin to hGLO I. Using this pharmacophore, in silico screening of chemical library was performed by docking study. Consequently, a new type of compound, which has a unique benzothiazole ring with a carboxyl group, named TLSC702, was found to inhibit hGLO I more effectively than S-p-bromobenzylglutathione (BBG), a well-known GSH analog inhibitor. The computational simulation of the binding mode indicates the contribution of Zn(2+)-chelating carboxyl group of TLSC702 to the hGLO I inhibitory activity. This implies an important scaffold-hopping of myricetin to TLSC702. Thus, TLSC702 may be a valuable seed compound for the generation of a new lead of anti-cancer pharmaceuticals targeting hGLO I.


Assuntos
Inibidores Enzimáticos/química , Flavonoides/química , Lactoilglutationa Liase/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 19(20): 5935-47, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21937235

RESUMO

Neutral endopeptidase (NEP) plays a key role in the metabolic inactivation of various bioactive peptides such as atrial natriuretic peptide (ANP), endothelins, and enkephalins. Furthermore, NEP is known to work as elastase in skin fibroblast. Therefore, effective inhibitors of NEP offer significant therapeutic interest as antihypertensives, analgesics, and skin anti-aging agents. Recently, the X-ray crystal structure of human NEP complexed with phosphoramidon has been reported and provided insights into the active site specificity of NEP. Here, we designed new inhibitors by using in silico molecular modeling and synthesized them by short steps. Expectedly, we found highly effective inhibitors with sub-nanomolar levels of IC(50) values. These results indicate that our structure-based molecular designing program is useful for obtaining novel NEP inhibitors. Furthermore, these inhibitors may be attractive leads for the generation of new pharmaceuticals for NEP-related diseases.


Assuntos
Dipeptídeos/química , Dipeptídeos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neprilisina/antagonistas & inibidores , Neprilisina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Químicos , Dados de Sequência Molecular , Estrutura Molecular , Neprilisina/metabolismo , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 19(1): 168-71, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21167721

RESUMO

High mobility group box1 (HMGB1) is a non-histone chromatin chromosomal protein playing an important role in chromatin architecture and transcriptional regulation. Recently, HMGB1 has been shown to be secreted into extracellular milieu in necrosis and apoptosis, and involved in inflammatory responses. However, the mechanism by which apoptotic cells release HMGB1 is unclear. In this study, to investigate the mechanism of HMGB1 release, we searched inhibitors of HMGB1 release from apoptotic cells. As a result, three compounds, 4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396), Pontacyl Violet 6R (PV6R), and Fmoc-D-Cha-OH (FDCO) in our in-house chemical library were found to inhibit HMGB1 release from staurosporine (STS)-induced apoptotic HeLa S3 cells. Interestingly, these three compounds have been previously categorized into apoptotic DNase γ inhibitors. Therefore, we examined whether apoptotic nucleosomal DNA fragmentation is involved in the release of HMGB1 during apoptosis. Expectedly, DR396, which is the most potent and specific inhibitor of DNase γ, was found to almost completely inhibit both HMGB1 release and internucleosomal DNA cleavage in HeLa S3 cells transfected with DNase γ expression vector and stably expressing DNase γ (HeLa S3/γ cells). These results clearly suggest that nucleosomal DNA fragmentation catalyzed by DNase γ is critical in the release of HMGB1 from apoptotic cells.


Assuntos
Apoptose/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fluoresceínas/farmacologia , Triazinas/farmacologia , Proteína HMGB1/metabolismo , Células HeLa , Humanos
17.
Biol Pharm Bull ; 34(2): 290-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21415543

RESUMO

Caspases cleave several cellular proteins to execute cell death by apoptosis. The identification of novel substrates of caspases could provide an important clue for elucidation of new apoptosis signaling pathways. In this study, we tested whether an amyloid precursor protein (APP) binding protein Fe65 is proteolytically degraded in neuronal cell death by apoptosis, using a neuron-like cell line, human neuroblastoma SH-SY5Y cells. When treated with DNA damaging agents, etoposide (ETP) and camptothecin (CPT), SH-SY5Y cells underwent apoptosis in a dose-dependent manner. Interestingly, Fe65 (97 kDa) was cleaved to a 65 kDa product during DNA damage-induced apoptosis. Furthermore, the cleavage of Fe65 was accompanied by activation of caspases-9 and -3. The restriction cleavage of Fe65 was completely suppressed by the treatment with a pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethylketone (z-VAD-fmk). These results reveal the restriction cleavage of Fe65 by caspases during DNA damage-induced apoptosis. Since Fe65 has been shown to suppress APP processing to amyloid ß (Aß) production, our findings may provide a new insight into the molecular mechanism by which DNA damage induces Aß production and subsequent neuronal cell death in Alzheimer's disease (AD).


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Dano ao DNA/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Doença de Alzheimer/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Humanos , Neuroblastoma , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
18.
Biol Pharm Bull ; 34(1): 146-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21212533

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a serine/threonine kinase that phosphorylate protein substrates involved in Alzheimer's disease (AD), such as microtubule-associated protein tau and amyloid precursor protein (APP). GSK-3ß consists of two splice variants; the major short form (GSK-3ß1) distributes in many organs and the minor long form (GSK-3ß2), whose structural difference is the insert of only 13 amino acid residues to the C-terminal side of the catalytic site of GSK-3ß1, is present in central nervous system. However, the physiological significances of the two variants are unclear. Here we examined whether the phosphorylation activities of two variants to tau and APP are different in cells. We found that GSK-3ß2 has lower phosphorylation activity to tau at AD-relevant epitope (Ser396) than GSK-3ß1 in cells, whereas the two variants exhibit equivalent levels of phosphorylation activities to APP. Recombinant GSK-3ß2 has also lower phosphorylation activity to tau than GSK-3ß1 in vitro, although the phosphorylation activities of the two variants to a synthetic peptide substrate pGS-2 are comparable. Furthermore, the deletion of the C-terminal tail (CT) of GSK-3ß2 resulted in considerable reduction of tau phosphorylation activity as compared with GSK-3ß1, suggesting that the lower phosphorylation activity of GSK-3ß2 to tau is attributed to weak interaction with tau through its unique higher-order structure of CT constructed by the 13 amino acids insertion. Such information may provide a clue for understanding of the physiological significance of the two splice variants of GSK-3ß and a new insight into the regulation of tau phosphorylation in central nervous system.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas tau/metabolismo , Células HEK293 , Humanos , Fosforilação , Isoformas de Proteínas , Estrutura Terciária de Proteína
19.
J Toxicol Sci ; 46(7): 341-344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193771

RESUMO

Reactive sulfur species (RSS) include biological persulfide molecules that protect cells against oxidative stress and heavy metal toxicity. Vascular endothelial cells regulate blood coagulation and fibrinolytic activity, and prevent vascular disorders such as atherosclerosis. We hypothesized that RSS protect vascular endothelial cells not only from nonspecific cell damage but also from specific functional damage through regulation of specific cell functions. In the present study, cultured bovine aortic endothelial cells were treated with sodium trisulfide, a sulfane sulfur donor, and both [3H]thymidine incorporation and effects on cell cycle were analyzed. These results suggest that RSS stimulate vascular endothelial cell proliferation. RSS may reduce the functional cytotoxicity of antiproliferative agents.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Enxofre/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Bovinos
20.
Medicines (Basel) ; 8(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199423

RESUMO

Background: ß-thujaplicin, a natural tropolone derivative, has anticancer effects on various cancer cells via apoptosis. However, the apoptosis regulatory proteins involved in this process have yet to be revealed. Methods: Trypan blue staining, a WST-8 assay, and a caspase-3/7 activity assay were used to investigate whether ß-thujaplicin sensitizes cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Additionally, western blotting was performed to clarify the effects of ß-thujaplicin on X-linked inhibitor of apoptosis protein (XIAP) in NCI-H460 cells and a fluorescence polarization binding assay was used to evaluate the binding-inhibitory activity of ß-thujaplicin against XIAP-BIR3. Results: ß- and γ-thujaplicins decreased the viability of NCI-H460 cells in a dose-dependent manner; they also sensitized the cells to TRAIL-induced cell growth inhibition and apoptosis. ß-thujaplicin significantly potentiated the apoptosis induction effect of TRAIL on NCI-H460 cells, which was accompanied by enhanced caspase-3/7 activity. Interestingly, ß-thujaplicin treatment in NCI-H460 cells decreased XIAP levels. Furthermore, ß-thujaplicin was able to bind XIAP-BIR3 at the Smac binding site. Conclusions: These findings indicate that ß-thujaplicin could enhance TRAIL-induced apoptosis in NCI-H460 cells via XIAP inhibition and degradation. Thus, the tropolone scaffold may be useful for designing novel nonpeptidic small-molecule inhibitors of XIAP and developing new types of anticancer drugs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa