Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 49(10): 4391-3, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20408578

RESUMO

Unilamellar crystallites of conductive ruthenium oxide having a thickness of about 1 nm were obtained via elemental exfoliation of a protonic layered ruthenate, H(0.2)RuO(2).0.5H(2)O, with an alpha-NaFeO(2)-related crystal structure. The obtained RuO(2) nanosheets possessed a well-defined crystalline structure with a hexagonal symmetry, reflecting the crystal structure of the parent material. The restacked RuO(2) nanosheets exhibited a high pseudocapacitance of approximately 700 F g(-1) in an acidic electrolyte, which is almost double the value of the nonexfoliated layered protonated ruthenate.

2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 858(1-2): 96-105, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17766198

RESUMO

A method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed for the simultaneous analysis of nine chlorogenic acids (CGAs), three isomers each of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs) and dicaffeoylquinic acids (dCQAs), and their two metabolites, caffeic acid (CA) and ferulic acid (FA), in human plasma. In simultaneous multiple reaction monitoring (MRM) measurements using ESI-MS/MS with a negative ion mode, a deprotonated molecular ion derived from each of the 11 molecules was used as a precursor ion while three diagnostic product ions characteristic for each were selected for the qualitative analysis. To obtain maximal intensities for all diagnostic product ions, the collision energy was optimized for each one. LC separation was achieved under conditions of a reversed-phase Inertsil ODS-2 column combined with a gradient elution system using 50mM acetic acid with 3% acetonitrile aqueous solution and 50 mM acetic acid with 100% acetonitrile. In the quantitative analysis, one of the three diagnostic product ions for each of the 11 molecules was selected. Application of simultaneous LC-ESI-MS/MS MRM measurements to analyze the 11 standards spiked into blank human plasma indicated that all diagnostic product ions were detected without any interference, and that the sensitivity, linearity and recovery of this method were acceptable. When using this method to analyze those 11 molecules in the plasma after oral ingestion of 250 ml of a drink containing a green coffee bean extract (300 mg CGAs), all 11 molecules were identified and CQAs, FQAs and FA were quantified. CQAs, FQAs and dCQAs in human plasma were detected for the first time. This method should be useful to understand the biological and pharmacological effects of CGAs, such as improvement of human hypertension.


Assuntos
Ácido Clorogênico/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Humanos , Masculino , Estrutura Molecular , Reprodutibilidade dos Testes
3.
J Phys Chem B ; 109(15): 7330-8, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16851839

RESUMO

Electrochemical impedance spectroscopy was conducted on a series of hydrous ruthenium oxides, RuO(2).xH(2)O, (x = 0.5, 0.3, 0) and a layered ruthenic acid hydrate (H(0.2)RuO(2.1).nH(2)O) in order to evaluate their protonic and electronic conduction. The capacitor response frequency was observed at lower frequency for RuO(2).xH(2)O with higher water content, which was suggested to be due to electrolyte exhaustion within the film and/or utilization of hydrated interparticle micropores that have high ionic resistance. Analysis of the impedance data indicated that the charge-transfer resistance through the film is not significantly affected by the water content in RuO(2).xH(2)O, and the capacitor frequency response is dominated by the protonic conduction. The capacitor response frequency of layered H(0.2)RuO(2.1).nH(2)O was comparable to RuO(2).0.5H(2)O. The high specific capacitance at low frequency for layered H(0.2)RuO(2.1).nH(2)O is attributed to the utilization of the expandable hydrous interlayer, which accounts for the ionic conduction. The present results demonstrate the importance of hydrous regions (either interparticle or interlayer) to allow appreciable protonic conduction for high energy and high power electrochemical capacitors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa