Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Cell ; 185(22): 4216-4232.e16, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240780

RESUMO

Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.


Assuntos
Predisposição Genética para Doença , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Organoides , Estudos de Associação Genética , Alelos , Fígado
2.
Nature ; 574(7776): 112-116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554966

RESUMO

Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.


Assuntos
Sistema Biliar/embriologia , Intestinos/embriologia , Fígado/embriologia , Modelos Biológicos , Morfogênese , Pâncreas/embriologia , Animais , Sistema Biliar/citologia , Biomarcadores/análise , Biomarcadores/metabolismo , Padronização Corporal , Endoderma/citologia , Endoderma/embriologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Intestinos/citologia , Fígado/citologia , Masculino , Camundongos , Organoides/citologia , Organoides/embriologia , Pâncreas/citologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/transplante , Fatores de Transcrição HES-1/análise , Fatores de Transcrição HES-1/metabolismo
3.
J Hepatol ; 80(5): 805-821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237864

RESUMO

Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.


Assuntos
Doenças do Sistema Digestório , Fígado Gorduroso , Gastroenterologia , Hepatopatias , Doenças Metabólicas , Humanos , Hepatopatias/genética , Hepatopatias/terapia , Organoides
4.
Nature ; 546(7659): 533-538, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614297

RESUMO

Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.


Assuntos
Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Fígado/citologia , Fígado/embriologia , Organogênese , Técnicas de Cultura de Tecidos/métodos , Idoso , Hipóxia Celular , Movimento Celular , Endotélio/citologia , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Feminino , Feto/citologia , Hepatócitos/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
5.
Gastroenterology ; 160(3): 831-846.e10, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039464

RESUMO

BACKGROUND & AIMS: Preclinical identification of compounds at risk of causing drug induced liver injury (DILI) remains a significant challenge in drug development, highlighting a need for a predictive human system to study complicated DILI mechanism and susceptibility to individual drug. Here, we established a human liver organoid (HLO)-based screening model for analyzing DILI pathology at organoid resolution. METHODS: We first developed a reproducible method to generate HLO from storable foregut progenitors from pluripotent stem cell (PSC) lines with reproducible bile transport function. The qRT-PCR and single cell RNA-seq determined hepatocyte transcriptomic state in cells of HLO relative to primary hepatocytes. Histological and ultrastructural analyses were performed to evaluate micro-anatomical architecture. HLO based drug-induced liver injury assays were transformed into a 384 well based high-speed live imaging platform. RESULTS: HLO, generated from 10 different pluripotent stem cell lines, contain polarized immature hepatocytes with bile canaliculi-like architecture, establishing the unidirectional bile acid transport pathway. Single cell RNA-seq profiling identified diverse and zonal hepatocytic populations that in part emulate primary adult hepatocytes. The accumulation of fluorescent bile acid into organoid was impaired by CRISPR-Cas9-based gene editing and transporter inhibitor treatment with BSEP. Furthermore, we successfully developed an organoid based assay with multiplexed readouts measuring viability, cholestatic and/or mitochondrial toxicity with high predictive values for 238 marketed drugs at 4 different concentrations (Sensitivity: 88.7%, Specificity: 88.9%). LoT positively predicts genomic predisposition (CYP2C9∗2) for Bosentan-induced cholestasis. CONCLUSIONS: Liver organoid-based Toxicity screen (LoT) is a potential assay system for liver toxicology studies, facilitating compound optimization, mechanistic study, and precision medicine as well as drug screening applications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Fígado/efeitos dos fármacos , Organoides/efeitos dos fármacos , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/patologia , Humanos , Fígado/citologia , Fígado/patologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade Aguda/métodos
6.
Dev Growth Differ ; 63(1): 47-58, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33423319

RESUMO

The human adult liver has a multi-cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long-term viability and functionality of primary hepatocytes. To this end, recent advancements in three-dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra-cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state-of-art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.


Assuntos
Fígado/citologia , Modelos Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Hepatócitos/citologia , Humanos , Organoides/citologia
7.
Transpl Int ; 34(11): 2031-2045, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34614263

RESUMO

Organoid technology is a state-of-the-art cell culture tool that has revolutionized study of development, regeneration, and diseases. Human liver organoids (HLOs) are now derived from either adult stem/progenitors or pluripotent stem cells (PSCs), emulating cellular diversity and structural symphony akin to the human liver. With the rapid rise in decompensated liver disease conditions only treated by liver transplant therapy, HLOs represent an alternate source for transplantation to address the ongoing shortage of grafts. Although ongoing advancements in bioengineering technology have moved the organoid transplant approach to the next level, sustained survival of the transplanted tissue still eludes us toward functional organ replacement. Herein, we review the development of HLOs and discuss promises and challenges on organoid transplant approaches.


Assuntos
Hepatopatias , Células-Tronco Pluripotentes , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Fígado/cirurgia , Hepatopatias/cirurgia , Organoides
8.
Development ; 144(6): 1018-1024, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219950

RESUMO

Liver bud progenitors experience a transient amplification during the early organ growth phase, yet the mechanism responsible is not fully understood. Collective evidence highlights the specific requirements in stem cell metabolism for expanding organ progenitors during organogenesis and regeneration. Here, transcriptome analyses show that progenitors of the mouse and human liver bud growth stage specifically express the gene branched chain aminotransferase 1, encoding a known breakdown enzyme of branched-chain amino acids (BCAAs) for energy generation. Global metabolome analysis confirmed the active consumption of BCAAs in the growing liver bud, but not in the later fetal or adult liver. Consistently, maternal dietary restriction of BCAAs during pregnancy significantly abrogated the conceptus liver bud growth capability through a striking defect in hepatic progenitor expansion. Under defined conditions, the supplementation of L-valine specifically among the BCAAs promoted rigorous growth of the human liver bud organoid in culture by selectively amplifying self-renewing bi-potent hepatic progenitor cells. These results highlight a previously underappreciated role of branched-chain amino acid metabolism in regulating mouse and human liver bud growth that can be modulated by maternal nutrition in vivo or cultural supplement in vitro.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Fígado/embriologia , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição , Transaminases/metabolismo , Animais , Feto/efeitos dos fármacos , Feto/embriologia , Feto/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Valina/farmacologia
9.
Development ; 144(6): 1056-1064, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275009

RESUMO

A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Organoides/citologia , Comunicação Parácrina , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Polaridade Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Morfogênese/genética , Especificidade de Órgãos/genética , Organoides/metabolismo , Proteínas/análise
10.
Nature ; 499(7459): 481-4, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23823721

RESUMO

A critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from human induced pluripotent stem cells (iPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularized organ such as liver. Here we show the generation of vascularized and functional human liver from human iPSCs by transplantation of liver buds created in vitro (iPSC-LBs). Specified hepatic cells (immature endodermal cells destined to track the hepatic cell fate) self-organized into three-dimensional iPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene-expression analyses revealed a resemblance between in vitro grown iPSC-LBs and in vivo liver buds. Human vasculatures in iPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of iPSC-LBs into tissue resembling the adult liver. Highly metabolic iPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement. Furthermore, mesenteric transplantation of iPSC-LBs rescued the drug-induced lethal liver failure model. To our knowledge, this is the first report demonstrating the generation of a functional human organ from pluripotent stem cells. Although efforts must ensue to translate these techniques to treatments for patients, this proof-of-concept demonstration of organ-bud transplantation provides a promising new approach to study regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/irrigação sanguínea , Fígado/fisiologia , Medicina Regenerativa/métodos , Animais , Diferenciação Celular , Linhagem da Célula , Doença Hepática Induzida por Substâncias e Drogas/terapia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Fígado/embriologia , Fígado/metabolismo , Falência Hepática/terapia , Transplante de Fígado , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/transplante , Camundongos , Técnicas de Cultura de Tecidos
11.
Cytotherapy ; 20(6): 861-872, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29793831

RESUMO

BACKGROUND AIMS: We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line METHODS: Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line RESULTS: Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology CONCLUSIONS: We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.


Assuntos
Engenharia Celular/métodos , Engenharia Celular/normas , Linhagem da Célula , Fidelidade a Diretrizes , Células-Tronco Pluripotentes Induzidas/citologia , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fidelidade a Diretrizes/normas , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Guias de Prática Clínica como Assunto/normas , Padrões de Referência , Reprodutibilidade dos Testes , Retina/citologia , Bancos de Tecidos/normas
12.
Dev Biol ; 420(2): 221-229, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27364470

RESUMO

The self-organizing tissue-based approach coupled with induced pluripotent stem (iPS) cell technology is evolving as a promising field for designing organoids in culture and is expected to achieve valuable practical outcomes in regenerative medicine and drug development. Organoids show properties of functional organs and represent an alternative to cell models in conventional two-dimensional differentiation platforms; moreover, organoids can be used to investigate mechanisms of development and disease, drug discovery and toxicity assessment. Towards a more complex and advanced organoid model, it is essential to incorporate multiple cell lineages including developing vessels. Using a self-condensation method, we recently demonstrated self-organizing "organ buds" of diverse systems together with human mesenchymal and endothelial progenitors, proposing a new reverse engineering method to generate a more complex organoid structure. In this section, we review characters of organ bud technology based on two important principles: self-condensation and self-organization focusing on liver bud as an example, and discuss their practicality in regenerative medicine and potential as research tools for developmental biology and drug discovery.


Assuntos
Fígado/embriologia , Organoides/embriologia , Fenômenos Biofísicos , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Modelos Biológicos , Organogênese , Organoides/citologia , Medicina Regenerativa , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
13.
Hepatology ; 60(1): 323-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24497168

RESUMO

UNLABELLED: Polycomb-group (PcG) proteins play crucial roles in self-renewal of stem cells by suppressing a host of genes through histone modifications. Identification of the downstream genes of PcG proteins is essential for elucidation of the molecular mechanisms of stem cell self-renewal. However, little is known about the PcG target genes in tissue stem cells. We found that the PcG protein, Ring1B, which regulates expression of various genes through monoubiquitination of histone H2AK119, is essential for expansion of hepatic stem/progenitor cells. In mouse embryos with a conditional knockout of Ring1B, we found that the lack of Ring1B inhibited proliferation and differentiation of hepatic stem/progenitor cells and thereby inhibited hepatic organogenesis. These events were characterized by derepression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. We conducted clonal culture experiments with hepatic stem/progenitor cells to investigate the individual genetic functions of Ring1B, Cdkn1a, and Cdkn2a. The data showed that the cell-cycle inhibition caused by Ring1B depletion was reversed when Cdkn1a and Cdkn2a were suppressed simultaneously, but not when they were suppressed individually. CONCLUSION: Our results show that expansion of hepatic stem/progenitor cells requires Ring1B-mediated epigenetic silencing of Cdkn1a and Cdkn2a, demonstrating that Ring1B simultaneously regulates multiple CDKIs in tissue stem/progenitor cells.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células-Tronco Embrionárias/citologia , Fígado/citologia , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fígado/embriologia , Fígado/fisiologia , Masculino , Camundongos , Camundongos Knockout , Organogênese/fisiologia , Complexo Repressor Polycomb 1/genética , Gravidez , Ubiquitina-Proteína Ligases/genética
14.
Stem Cells ; 32(3): 816-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038678

RESUMO

In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.


Assuntos
Orelha/anatomia & histologia , Cartilagem Elástica/citologia , Cartilagem Hialina/patologia , Articulações/patologia , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Separação Celular , Células Clonais , Cães , Humanos , Transplante Autólogo
16.
Proc Natl Acad Sci U S A ; 108(35): 14479-84, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21836053

RESUMO

Despite the great demands for treating craniofacial injuries or abnormalities, effective treatments are currently lacking. One promising approach involves human elastic cartilage reconstruction using autologous stem/progenitor populations. Nevertheless, definitive evidence of the presence of stem cells in human auricular cartilage remains to be established. Here, we demonstrate that human auricular perichondrium, which can be obtained via a minimally invasive approach, harbors a unique cell population, termed as cartilage stem/progenitor cells (CSPCs). The clonogenic progeny of a single CD44(+) CD90(+) CSPC displays a number of features characteristic of stem cells. Highly chondrogenic CSPCs were shown to reconstruct large (>2 cm) elastic cartilage after extended expansion and differentiation. CSPC-derived cartilage was encapsulated by a perichondrium layer, which contains a CD44(+) CD90(+) self-renewing stem/progenitor population and was maintained without calcification or tumor formation even after 10 mo. This is a unique report demonstrating the presence of stem cells in auricular cartilage. Utilization of CSPCs will provide a promising reconstructive material for treating craniofacial defects with successful long-term tissue restoration.


Assuntos
Condrócitos/citologia , Cartilagem da Orelha/citologia , Receptores de Hialuronatos/análise , Células-Tronco/citologia , Antígenos Thy-1/análise , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Condrócitos/química , Cartilagem da Orelha/química , Humanos , Células-Tronco/química
17.
Trends Endocrinol Metab ; 35(6): 462-465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575442

RESUMO

En masse phenotyping technology, using massively mosaic donor-derived cells and organoids, can offer enriched insights for cellotype-phenotype association in a cell-type-specific regulatory context. This emerging approach will help to discover biomarkers, inform genetic-epigenetic interactions and identify personalized therapeutic targets, offering hope for precision medicine against highly heterogeneous metabolic diseases.


Assuntos
Organoides , Fenótipo , Humanos , Organoides/metabolismo , Medicina de Precisão/métodos , Animais , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo
18.
Reprod Toxicol ; 126: 108598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657700

RESUMO

The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.


Assuntos
Ovário , Testículo , Humanos , Testículo/efeitos dos fármacos , Ovário/efeitos dos fármacos , Masculino , Feminino , Animais , Testes de Toxicidade/métodos , Técnicas de Cultura de Células
19.
Cells ; 13(2)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247826

RESUMO

The demand for stem cell-based cultured meat as an alternative protein source is increasing in response to global food scarcity. However, the definition of quality controls, including appropriate growth factors and cell characteristics, remains incomplete. Cluster of differentiation (CD) 29 is ubiquitously expressed in bovine muscle tissue and is a marker of progenitor cells in cultured meat. However, CD29+ cells are naturally heterogeneous, and this quality control issue must be resolved. In this study, the aim was to identify the subpopulation of the CD29+ cell population with potential utility in cultured meat production. The CD29+ cell population exhibited heterogeneity, discernible through the CD44 and CD344 markers. CD29+CD44-CD344- cells displayed the ability for long-term culture, demonstrating high adipogenic potential and substantial lipid droplet accumulation, even within 3D cultures. Conversely, CD29+CD44+ cells exhibited rapid proliferation but were not viable for prolonged culture. Using cells suitable for adipocyte and muscle differentiation, we successfully designed meat buds, especially those rich in fat. Collectively, the identification and comprehension of distinct cell populations within bovine tissues contribute to quality control predictions in meat production. They also aid in establishing a stable and reliable cultured meat production technique.


Assuntos
Carne in vitro , Carne , Animais , Bovinos , Células-Tronco , Adipócitos , Controle de Qualidade
20.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352573

RESUMO

Background and Aims: We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA). Methods: Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage:HIO co-cultures were exposed to lipopolysaccharide (LPS) with and without ETYA pre-treatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan Low Density Array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO pro-fibrotic gene expression and collagen content. Results: iPSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome secreted products, and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and pro-fibrotic gene expression pathways in LPS stimulated macrophages. Co-culture of LPS-primed macrophages with HIO led to up-regulation of fibroblast activation genes including ACTA2 and COL1A1 , and an increase in HIO collagen content. ETYA pre-treatment prevented pro-fibrotic effects of LPS-primed macrophages. Conclusions: ETYA inhibits pro-fibrotic effects of LPS-primed macrophages upon co-cultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa