Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(26): 43850-43863, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178471

RESUMO

We employ the covariance matrix adaptation evolution strategy (CMA-ES) algorithm to design compact and low-loss S-bends on the standard silicon-on-insulator platform. In line with the CMA-ES-based approach, we present experimental results demonstrating insertion losses of 0.041 dB, 0.025 dB, and 0.011 dB for S-bends with sizes of 3.5 µm, 4.5 µm, and 5.5 µm, respectively, which are the lowest insertion losses within the footprint range smaller than approximately 30 µm2. These outcomes underscore the remarkable performance and adaptability of the CMA-ES to design Si photonics devices tailored for high-density photonic integrated circuits.

2.
Opt Express ; 30(19): 33940-33954, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242418

RESUMO

Photonic integrated circuits (PICs) are emerging as a promising tool for accelerating matrix multiplications in deep learning. Previous PIC architectures, primarily focusing on the matrix-vector multiplication (MVM), have large hardware errors that increase with the device scale. In this work, we propose a novel PIC architecture for MVM, which features an intrinsically small hardware error that does not increase with the device scale. Moreover, we further develop this concept and propose a PIC architecture for the general matrix-matrix multiplication (GEMM), which allows the GEMM to be directly performed on a photonic chip with a high energy efficiency unattainable by parallel or sequential MVMs. This work provides a promising approach to realize a high fidelity and high energy efficiency optical computing platform.

3.
Opt Express ; 30(13): 23318-23329, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225015

RESUMO

Quantum well intermixing (QWI) on a III-V-on-insulator (III-V-OI) substrate is presented for active-passive integration. Shallow implantation at a high temperature, which is essential for QWI on a III-V-OI substrate, is accomplished by phosphorus molecule ion implantation. As a result, the bandgap wavelength of multi-quantum wells (MQWs) on a III-V-OI substrate is successfully tuned by approximately 80 nm, enabling the monolithic integration of electro-absorption modulators and waveguide photodetectors using a lateral p-i-n junction formed along the InP/MQW/InP rib waveguide. Owing to the III-V-OI structure and the rib waveguide structure, the parasitic capacitance per unit length can be reduced to 0.11 fF/µm, which is suitable for high-speed and low-power modulators and photodetectors. The presented QWI can extend the possibility of a III-V complementary metal-oxide-semiconductor (CMOS) photonics platform for large-scale photonic integrated circuits.

4.
Opt Express ; 30(13): 22848-22859, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224976

RESUMO

In this work, we numerically and experimentally examined the impact of parasitic capacitance on the modulation bandwidth of a III-V/Si hybrid metal-oxide-semiconductor (MOS) optical modulator. The numerical analysis revealed that the parasitic capacitance between the III-V membrane and the Si slab should be considered to achieve high-speed modulation, particularly in the case of a thick gate oxide. We also fabricated a high-speed InGaAsP/Si hybrid MOS optical modulator with a low capacitance using a SiO2-embedded Si waveguide. The fabricated device exhibited a modulation efficiency of 0.245 Vcm and a 3 dB bandwidth of up to 10 GHz. Clear eye patterns with 25 Gbps non-return-to-zero (NRZ) modulation and 40 Gbps 4-level pulse amplitude modulation (PAM-4) were obtained without pre-emphasis.

5.
Opt Express ; 29(12): 18502-18511, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154105

RESUMO

We propose a microring resonator (MRR) optical switch based on III-V/Si hybrid metal-oxide-semiconductor (MOS) optical phase shifter with an ultrathin InP membrane. By reducing the thickness of the InP membrane, we can reduce the insertion loss of the phase shifter, resulting in a high-quality-factor (Q-factor) MRR switch. By optimizing the device structure using numerical analysis, we successfully demonstrated a proof-of-concept MRR optical switch. The optical switch exhibits 0.3 pW power consumption for switching, applicable to power-efficient, thermal-crosstalk-free, Si programmable photonic integrated circuits (PICs) based on wavelength division multiplexing (WDM).

6.
Opt Express ; 28(20): 29730-29739, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114865

RESUMO

We numerically analyzed the modulation characteristics of an InP organic hybrid (IOH) optical modulator consisting of an InP slot waveguide and an electro-optic (EO) polymer. Since InP has a higher electron mobility and a lower electron-induced free-carrier absorption than Si, the series resistance of an InP slot waveguide can be significantly reduced with relatively smaller optical loss than an Si slot waveguide. As a result, the trade-off between optical loss and modulation bandwidth can be remarkably improved compared with a Si organic hybrid (SOH) optical modulator. When the modulation bandwidth was designed to be 100 GHz, the optical loss of the IOH modulator was 13-fold smaller than that of the SOH one. The simulation of the eye diagram revealed that the improved optical modulation amplitude enabled the clear eye opening with a 100 Gbps non return-to-zero signal using the IOH modulator. The IOH integration is promising for a high-speed modulator with low energy consumption beyond 100 Gbps.

7.
Opt Express ; 28(24): 35663-35673, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379677

RESUMO

We propose a III-V/Si hybrid metal-oxide-semiconductor (MOS) optical phase shifter using an ultrathin InP membrane, which allows us to eliminate the III-V taper required for mode conversion between Si and hybrid waveguides. We numerically revealed that thinning a III-V membrane can reduce the insertion loss of the phase shifter while maintaining high modulation efficiency because the optical phase shift is induced by carrier accumulation at the MOS interface. We experimentally demonstrated the proposed optical phase shifter with an ultrathin InP membrane and achieved the modulation efficiency of 0.54 Vcm and the insertion loss of 0.055 dB. Since the taperless structure makes the hybrid integration easier and more flexible, the hybrid MOS optical phase shifter with an ultrathin III-V membrane is promising for large-scale Si programmable photonic integrated circuits.

8.
Opt Express ; 27(5): 6451-6458, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876230

RESUMO

We report on a Ge thermo-optic (TO) phase shifter on a Ge-on-insulator (GeOI) platform for mid-infrared (MIR) integrated photonics. Numerical analysis showed that the Ge TO phase shifter can realize three times higher modulation efficiency than a Si TO phase shifter, owing to the large TO coefficient and refractive index of Ge. The Ge TO phase shifter, operating at a wavelength of 1.95 µm fabricated on a GeOI wafer, achieved an operating power of 7.8 mW for a phase shift of π, which was less than half of that in a previously reported Si TO phase shifter operating at a wavelength of 1.55 µm. Thus, the Ge TO phase shifter is promising for high-performance and low-power MIR photonic integrated circuits for various sensing and communication applications.

9.
Opt Express ; 26(4): 4842-4852, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475329

RESUMO

We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

10.
Opt Express ; 26(23): 30546-30555, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469952

RESUMO

We present a proof-of-concept demonstration of a Ge/a-Si hybrid photonic integrated circuit platform utilizing a high-quality Ge-on-insulator (GeOI) wafer fabricated by wafer bonding technology. Amorphous Si (a-Si) formed by PECVD is found to be a promising alternative to conventional Si passive waveguides on a SiO2 BOX. Taking advantage of the high crystal quality of the Ge active layer and the easy fabrication of an a-Si waveguide, a low-dark-current Ge waveguide PIN photodetector monolithically integrated with an a-Si passive waveguide is successfully demonstrated on a GeOI wafer.

11.
Opt Lett ; 43(12): 2885-2888, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905715

RESUMO

Germanium is a promising material for mid-infrared (MIR) integrated photonics due to its CMOS compatibility and wide transparency window covering the fingerprint spectral region (2-15 µm). However, due to the limited quality and structural configurations of conventional germanium-based integration platforms, the realization of high-Q on-chip germanium resonators in the MIR spectral range remains challenging to date. Here we experimentally demonstrate an air-cladding MIR germanium microring resonator with, to the best of our knowledge, the highest loaded Q-factor of ∼57,000 across all germanium-based integration platforms to date. A propagation loss of 5.4 dB/cm and a high extinction ratio of 22 dB approaching the critical coupling condition are experimentally realized. These are enabled by our smart-cut methods for developing high-quality germanium-on-insulator wafers and by implementing our suspended-membrane structure. Our high-Q germanium microring resonator is a promising step towards a number of on-chip applications in the MIR spectral range.

12.
Opt Express ; 25(24): 29993-30000, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221034

RESUMO

We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 µm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO2/Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

13.
Opt Lett ; 42(11): 2094-2097, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569853

RESUMO

We present a focusing subwavelength grating (SWG) for efficient coupling of mid-infrared (mid-IR) light into suspended membrane Ge photonic integrated circuits (PICs) that enable mid-IR applications in the entire fingerprint region. By virtue of their wide spectral transparency window and air-cladding device configuration, the suspended membrane Ge PICs are expected to be effective for mid-IR applications over the spectral region covering from 2 to 15 µm. Specifically, we demonstrate the maximum coupling efficiency of -11 dB with a 1-dB bandwidth of ∼58 nm at the SWG's center wavelength of 2.37 µm. Our focusing SWG is expected to advance the development of on-chip long-wavelength mid-IR applications such as biochemical sensing, thermal imaging, and nonlinear optics in the fingerprint region.

14.
Opt Lett ; 42(15): 2882-2885, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957198

RESUMO

The mid-infrared (MIR) spectral range holds significant potential for spectroscopic and sensing applications because it encompasses the fingerprint region that unveils the vibrational and rotational signatures of molecules. CMOS-compatible on-chip devices that can achieve strong light-matter interaction in the entire fingerprint region are considered a promising way for such applications, but remain unprecedented. Here we present an on-chip MIR germanium photonic crystal cavity that covers the entire fingerprint region. This is made possible by harnessing a homemade air-cladding germanium platform. Our MIR device creates a new avenue toward integrated nonlinear optics and on-chip biochemical sensing in the fingerprint region.

15.
Opt Express ; 24(11): 11855-64, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410108

RESUMO

We present Ge rib waveguide devices fabricated on a Ge-on-insulator (GeOI) wafer as a proof-of-concept Ge mid-infrared photonics platform. Numerical analysis revealed that the driving current for a given optical attenuation in a carrier-injection Ge waveguide device at a 1.95 µm wavelength can be approximately five times smaller than that in a Si device, enabling in-line carrier-injection Ge optical modulators based on free-carrier absorption. We prepared a GeOI wafer with a 2-µm-thick buried oxide layer (BOX) by wafer bonding. By using the GeOI wafer, we fabricated Ge rib waveguides. The Ge rib waveguides were transparent to 2 µm wavelengths and the propagation loss was found to be 1.4 dB/mm, which may have been caused by sidewall scattering. We achieved a negligible bend loss in the Ge rib waveguide, even with a 5 µm bend radius, owing to the strong optical confinement in the GeOI structure. We also formed a lateral p-i-n junction along the Ge rib waveguide to explore the capability of absorption modulation by carrier injection. By injecting current through the lateral p-i-n junction, we achieved optical intensity modulation in the 2 µm band based on the free-carrier absorption in Ge.

16.
Opt Express ; 24(3): 1979-85, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906774

RESUMO

We demonstrate a strained Si0.91Ge0.09-based carrier-injection Mach-Zehnder (MZ) optical modulator using the enhanced plasma dispersion effect in strained SiGe through mass modulation for the first time. The SiGe modulator has an injection current of 1.47 mA for a phase shift of π which is lower than that for a Si modulator. Also, it is expected that the injection current can be further reduced by increasing the strain and Ge fraction, enabling operation at an injection current of less than 1 mA. As an example of the dynamic characteristics, 10 Gbps modulation with clear eye opening was obtained by the pre-emphasis method.

17.
Opt Express ; 23(13): 16967-76, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191706

RESUMO

We propose GeOx passivation by plasma post-oxidation for dark-current suppression in a germanium (Ge) photodetector (PD). A GeOx/Ge interface exhibits a significantly lower interface trap density than SiO2/Ge and Al2O3/Ge interfaces. GeOx passivation on a Ni/Ge Schottky diode decreases the dark current under -1 V bias by more than one order of magnitude compared with Al2O3 passivation, which is attributed to the reduction in the surface leakage current. We also evaluated the Ge surface potential to study its effect on the surface leakage current. It was found that the surface leakage is suppressed when the accumulation condition of the Ge surface is enhanced as a result of fixed charges in the passivation layer. Thus, we have revealed the importance of a low interface trap density at the Ge surface and a suitable number of fixed charges in the passivation layer for achieving a low dark current in Ge metal-semiconductor-metal (MSM) PDs. Finally, we have examined the effect of GeOx passivation on a normal-incidence Ge MSM PD. We observed a significant decrease in the dark current in the GeOx-passivated samples, and a dark current of 97 nA under -1 V bias was achieved under the optimal GeOx passivation conditions.

18.
Opt Express ; 23(9): 12354-61, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969320

RESUMO

We demonstrate a strained SiGe variable optical attenuator (VOA) with a lateral pin junction which exhibits record-low injection-current for 20-dB attenuation. We optimize the distance between the highly doped p + and n + regions in the lateral pin junction to effectively inject electrons and holes, taking into account the propagation loss. In conjunction with the enhanced free-carrier absorption in strained SiGe, the SiGe VOA with the optimized lateral pin junction exhibits 20-dB attenuation by 20-mA/mm injection current, which is 1.5 times lower current density than that of the Si VOA. The SiGe VOA also shows better RF response than the Si VOA due to the short carrier lifetime in SiGe, allowing us to achieve efficient and fast attenuation modulation simultaneously. Furthermore, 2-GHz switching and error-free transmission of 4 × 12.5 Gbps WDM signal have been also achieved.

19.
Opt Express ; 22(7): 7458-64, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718120

RESUMO

Surface passivation by Al(2)O(3) deposited by atomic layer deposition (ALD) at 200 °C is examined to suppress surface recombination for carrier-injection SiGe optical modulators. We have investigated the interface trap densities at SiO(2)/Si and Al(2)O(3)/Si interfaces formed by plasma enhanced chemical vapor deposition (PECVD) and ALD, respectively. By evaluating metal-oxide-semiconductor (MOS) capacitors formed on Si surfaces after dry etching, we found that the interface trap density of Al(2)O(3) passivated surface is more than one order of magnitude less than that of SiO(2) passivated one. As a result, the modulation efficiency is improved by 1.3 by inserting Al(2)O(3) layer prior to SiO(2) deposition by PECVD owing to superior interface between Al(2)O(3) and Si. The Al(2)O(3) passivated device exhibits comparable modulation efficiency to a thermally-grown SiO(2) passivated one formed by dry oxidation. Hence, the ALD Al(2)O(3) passivation is effective to passivate SiGe optical modulators for which low temperature processes are required.

20.
Nat Commun ; 15(1): 3549, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724501

RESUMO

A nonvolatile optical phase shifter is a critical component for enabling the fabrication of programmable photonic integrated circuits on a Si photonics platform, facilitating communication, computing, and sensing. Although ferroelectric materials such as BaTiO3 offer nonvolatile optical phase shift capabilities, their compatibility with complementary metal-oxide-semiconductor fabs is limited. Hf0.5Zr0.5O2 is an emerging ferroelectric material, which exhibits complementary metal-oxide-semiconductor compatibility. Although extensively studied for ferroelectric transistors and memories, its application to photonics remains relatively unexplored. Here, we show the optical phase shift induced by ferroelectric Hf0.5Zr0.5O2. We observed a negative change in refractive index at a 1.55 µm wavelength in a pristine device regardless of the direction of the applied electric field. The nonvolatile phase shift was only observed once in a pristine device. This non-reversible phase shift can be attributed to the spontaneous polarization within the Hf0.5Zr0.5O2 film along the external electric field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa