Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 80(4): 319-328, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31868960

RESUMO

BACKGROUND: Castration-resistant prostate cancer can develop resistance to enzalutamide because of androgen receptor (AR) point mutations, AR overexpression, constitutively active AR splice variants, and/or elevated intratumoral androgen synthesis. The point mutation ARF876L was reported to be stimulated, instead of inhibited, by enzalutamide, thus contributing to enzalutamide resistance. We have recently developed JJ-450 as a novel AR antagonist with the potential to treat enzalutamide-resistant castration-resistant prostate cancer (CRPC). METHODS: We employed several assays to determine the impact of JJ-450 and enzalutamide on prostate cancer cell lines expressing green fluorescent protein (GFP)-ARF876L . These assays include a prostate-specific antigen enhancer/promoter-based luciferase assay to determine AR transcriptional activity, a quantitative real-time polymerase chain reaction assay, and Western blot analysis to detect expression of AR-target genes at the messenger RNA and protein level, fluorescence microscopy to show AR subcellular localization, and a 5-bromo-2'-deoxyuridine assay to measure prostate cancer cell proliferation. RESULTS: As expected, enzalutamide inhibited wild-type (WT) AR but not ARF876L transcriptional activity in the luciferase assay. In contrast, JJ-450 inhibited both WT-AR and ARF876L transcriptional activity to a similar extent. Also, enzalutamide retarded androgen-induced nuclear import of GFP-AR, but not GFP-ARF876L , whereas JJ-450 retarded nuclear import of both GFP-AR and GFP-ARF876L . To further evaluate JJ-450 inhibition of ARF876L , we stably transfected C4-2 cells separately with GFP-AR or GFP-ARF876L . Enzalutamide inhibited endogenous AR-target gene expression in C4-2-GFP-ARWT , but not in the C4-2-GFP-ARF876L subline, whereas JJ-450 inhibited AR-target gene expression in both C4-2 sublines. More importantly, enzalutamide inhibited proliferation of C4-2-GFP-ARWT , but not of the C4-2-GFP-ARF876L subline, whereas JJ-450 inhibited proliferation of both C4-2 sublines. CONCLUSION: JJ-450 inhibits enzalutamide-resistant ARF876L mutant nuclear translocation and function. Our findings suggest that JJ-450 and its analogs should be further developed to provide a potential new approach for the treatment of enzalutamide-resistant CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Feniltioidantoína/análogos & derivados , Piperazinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclopropanos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Nitrilas , Células PC-3 , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
J Org Chem ; 82(24): 13141-13151, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29099595

RESUMO

The dienone-phenol rearrangement is a useful tool for the synthesis of highly substituted phenols. In our previous study of the rearrangement of 4,4-disubstituted 2-hydroxycyclohexa-2,5-dienone under deoxyfluorination conditions, bond migration proceeded with very poor regioselectivity. In this paper, an acid-mediated rearrangement of O-perfluoroalkylsulfonyl difluorides with regioselective migration toward the ß'-carbon is reported. This method allowed the synthesis of a fluorinated analog of allocolchicinoids with improved total yield. Successful application to other substrates was also demonstrated.

3.
Mol Cancer Ther ; 19(1): 75-88, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554654

RESUMO

Reactivation of androgen receptor (AR) appears to be the major mechanism driving the resistance of castration-resistant prostate cancer (CRPC) to second-generation antiandrogens and involves AR overexpression, AR mutation, and/or expression of AR splice variants lacking ligand-binding domain. There is a need for novel small molecules targeting AR, particularly those also targeting AR splice variants such as ARv7. A high-throughput/high-content screen was previously reported that led to the discovery of a novel lead compound, 2-(((3,5-dimethylisoxazol-4-yl)methyl)thio)-1-(4-(2,3-dimethylphenyl)piperazin-1-yl)ethan-1-one (IMTPPE), capable of inhibiting nuclear AR level and activity in CRPC cells, including those resistant to enzalutamide. A novel analogue of IMTPPE, JJ-450, has been investigated with evidence for its direct and specific inhibition of AR transcriptional activity via a pulldown assay and RNA-sequencing analysis, PSA-based luciferase, qPCR, and chromatin immunoprecipitation assays, and xenograft tumor model 22Rv1. JJ-450 blocks AR recruitment to androgen-responsive elements and suppresses AR target gene expression. JJ-450 also inhibits ARv7 transcriptional activity and its target gene expression. Importantly, JJ-450 suppresses the growth of CRPC tumor xenografts, including ARv7-expressing 22Rv1. Collectively, these findings suggest JJ-450 represents a new class of AR antagonists with therapeutic potential for CRPC, including those resistant to enzalutamide.


Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/genética , Splicing de RNA/genética , Receptores Androgênicos/genética , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa