Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JHEP Rep ; 5(9): 100811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575883

RESUMO

Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.

2.
J Clin Invest ; 130(11): 5721-5737, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32721948

RESUMO

Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density. Culture studies demonstrated that ZNF217 mediates a matrix stiffness- and collagen density-induced increase in Akt activity and mammary epithelial cell proliferation. Manipulation of the epithelium in a mouse model of mammographic density supported a causal relationship between stromal stiffness, reduced miR-203, higher levels of the murine homolog Zfp217, and increased Akt activity and mammary epithelial proliferation. ZNF217 was also increased in the normal breast epithelium of women with high mammographic density, correlated positively with epithelial proliferation and density, and inversely with miR-203. The findings identify ZNF217 as a potential target toward which preexisting therapies, such as the Akt inhibitor triciribine, could be used as a chemopreventive agent to reduce cancer risk in women with high mammographic density.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Proteínas Oncogênicas/metabolismo , Transativadores/metabolismo , Adulto , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Método Duplo-Cego , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Neoplásico/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa