Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38629370

RESUMO

Induced Pluripotent Stem Cells (iPSCs) are among the top versatile implements of biomedical research. Stem cell science has made strides over the past few years, emerging as a new opportunity to treat cancer, and many such continuous initiatives have been made into clinical trials. As the global mortality rate is too high despite the effectiveness of prevalent cancer therapies, this review explores the potential of iPSC in different aspects of cancer-related areas. The preparation of iPSCs, including their derivation from cancer stem cells, was covered after establishing the intricacy of current cancer treatments. This article highlights the potential of iPSC- based NK cells and dendritic cells for immunotherapy and delves into the role of iPSC-based mesenchymal cells in targeted therapy. The potential of iPSC-derived organoids as a vital tool for disease modeling and drug discovery has been showcased, and the importance of iPSC-based cancer vaccines is also emphasized. The ongoing clinical trials of iPSC-based cancer treatment have also been highlighted. Though much work remains to be done to implicate these iPSC-based therapeutic options from research labs to clinics and hospitals, ongoing studies and clinical/translational follow-ups raise hope for novel cancer therapies employing iPSC technology.

2.
Exp Neurol ; 381: 114938, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39197707

RESUMO

Vascular dementia (VaD) is a complex neurodegenerative condition, with cerebral small vessel dysfunctions as the central role in its pathogenesis. Given the lack of suitable animal models to study the disease pathogenesis, we developed a mouse model to closely emulate the clinical scenarios of recurrent transient ischemic attacks (TIAs) leading to VaD using vasoconstricting peptide Endothelin-1(ET-1). We observed that administration of ET-1 led to blood-brain barrier (BBB) disruption and detrimental changes in its components, such as endothelial cells and pericytes, along with neuronal loss and synaptic dysfunction, resulting in irreversible memory loss. Further, in our pursuit of understanding potential interventions, we co-administered pleiotrophin (PTN) alongside ET-1 injections. PTN exhibited remarkable efficacy in preserving vital components of the BBB, including endothelial cells and pericytes, thereby restoring BBB integrity, preventing neuronal loss, and enhancing memory function. Our findings give a valuable framework for understanding the detrimental effects of multiple TIAs on brain health and provide a useful animal model to explore VaD's underlying mechanisms further and pave the way for promising therapies.


Assuntos
Proteínas de Transporte , Citocinas , Endotelina-1 , Camundongos Endogâmicos C57BL , Animais , Camundongos , Proteínas de Transporte/metabolismo , Endotelina-1/toxicidade , Citocinas/metabolismo , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Demência Vascular/patologia , Demência Vascular/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa