Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18002-18010, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905195

RESUMO

Imidazoles are crucial structural components in a variety of small-molecule inhibitors designed to target different kinases in anticancer treatment. However, the effectiveness of such inhibitors is often hampered by nonspecific effects and the development of resistance. Photopharmacology provides a compelling solution by enabling external control over drug activity with spatiotemporal precision. Herein, we introduce a novel strategy for caging bioactive triarylimidazole-based drug molecules. This approach involves introducing a dialkylamino group as a photoremovable group on the carbon atom of the imidazole ring, which intrinsically modulates the core structure from planar imidazole to tetrahedral 2H-imidazole, enabling the caged compound to be selectively uncaged upon visible light exposure. We applied this innovative caging technique to SB431542, a triarylimidazole-based small-molecule inhibitor that targets the pivotal TGF-ß signaling pathway, the dysregulation of which is linked to several human diseases, including cancer. Our results demonstrated the selective inhibition of human breast cancer cell migration in vitro upon light activation, highlighting the potential of our approach to transform triarylimidazole-based drug molecules into visible light-activatable drugs, thereby facilitating spatiotemporal regulation of their pharmacological activity.


Assuntos
Imidazóis , Luz , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Movimento Celular/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/síntese química
2.
Chemistry ; 30(19): e202400047, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278760

RESUMO

Photoswitches are molecules that can absorb light of specific wavelengths and undergo a reversible transformation between their trans and cis isomeric forms. In phenylazo photoswitches, it is common for the less stable cis (Z) isomer to convert back to the more stable trans (E) isomer either through photochemical or thermal means. In this research, we designed new derivatives of phenylazothiazole (PAT) photoswitches, PAT-Fn, which feature fluorine substituents on their phenyl component. These derivatives can reversibly isomerize under visible light exposure with the enrichment of E and Z isomers at photostationary state (PSS). Surprisingly, we observed an unconventional phenomenon when these PAT-Fn (n≧2) photoswitches were in their cis isomeric state in the absence of light. Instead of the anticipated transformation from cis to trans isomer, these compounds converted to an oligomeric compound. Our detailed experimental investigation and theoretical calculations, indicated the crucial role of fluorine substituents and the distinctive geometric arrangement of the cis isomer in driving the unexpected oligomerization process originating from the cis isomeric state.

3.
J Am Chem Soc ; 145(16): 9072-9080, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043415

RESUMO

A novel class of photoswitches based on a phenylazothiazole scaffold that undergoes reversible isomerization under visible-light irradiation is reported. The photoswitch, which comprises a thiazole heteroaryl segment directly connected to a phenyl azo chromophore, has very different spectral characteristics, such as a redshifted absorption maximum wavelength and well-separated absorption bands of the trans and cis isomers, than conventional azobenzene and other heteroaryl azo compounds. Substituents at the ortho and para positions of the phenyl ring of the photoswitch resulted in a further shift to longer wavelengths up to 525 nm at the absorption maximum with a small thermal stability compensation. These photoswitches showed excellent photostationary distributions of the trans and cis isomers, thermal half-lives of up to 7.2 h, and excellent reductant stability. The X-ray crystal structure analysis revealed that the trans isomers exhibited a planar geometry and the cis isomers exhibited a T-shaped orthogonal geometry. Detailed ab initio calculations further demonstrated the plausible electronic transitions and isomerization energy barriers, which were consistent with the experimental observations. The fundamental design principles elucidated in this study will aid in the development of a wide variety of visible-light photoswitches for photopharmacological applications.

4.
Org Biomol Chem ; 21(30): 6120-6123, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37464895

RESUMO

We serendipitously found that chaperonin GroEL can hydrolyze ortho-nitrophenyl ß-galactoside (ONPG), a well-known substrate of the enzyme ß-galactosidase. The ONPG hydrolysis by GroEL follows typical enzyme kinetics. Our experiments and molecular docking studies suggest ONPG binding at the ATP binding site of GroEL.


Assuntos
Chaperoninas , Galactosídeos , Simulação de Acoplamento Molecular , Sítios de Ligação , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Dobramento de Proteína , Hidrólise
5.
Chemistry ; 28(30): e202200807, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332959

RESUMO

Adenosine triphosphate (ATP) is the energy source for various biochemical processes and biomolecular motors in living things. Development of ATP antagonists and their stimuli-controlled actions offer a novel approach to regulate biological processes. Herein, we developed azobenzene-based photoswitchable ATP antagonists for controlling the activity of motor proteins; cytoplasmic and axonemal dyneins. The new ATP antagonists showed reversible photoswitching of cytoplasmic dynein activity in an in vitro dynein-microtubule system due to the trans and cis photoisomerization of their azobenzene segment. Importantly, our ATP antagonists reversibly regulated the axonemal dynein motor activity for the force generation in a demembranated model of Chlamydomonas reinhardtii. We found that the trans and cis isomers of ATP antagonists significantly differ in their affinity to the ATP binding site.


Assuntos
Trifosfato de Adenosina , Dineínas , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Dineínas/química , Dineínas/metabolismo , Microtúbulos
6.
Angew Chem Int Ed Engl ; 61(42): e202209225, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35950260

RESUMO

Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.

7.
J Am Chem Soc ; 143(26): 9884-9892, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162206

RESUMO

Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.

8.
J Am Chem Soc ; 143(14): 5519-5525, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784073

RESUMO

A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.


Assuntos
Éteres Cíclicos/química , Substâncias Luminescentes/química , Fenômenos Mecânicos , Polímeros/química
9.
Chemistry ; 27(11): 3832-3841, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33305451

RESUMO

Diacetylene derivatives exhibit solid-state polymerization to polydiacetylene initiated by UV light or γ-ray irradiation. The activation of the photopolymerization relies on the monomer diynes arrangement. Recently, it has been demonstrated that the first mechanoresponsive bisamide substituted diacetylenes (DAs) show dramatic switching from light-inert to light-reactive states at a given pressure. The origin of this unique phenomenon was apparently related to the pressure-sensitive crystalline transition in DAs, but the molecular mechanism remains elusive. To obtain more insight, herein a series of DAs with varying terminal alkyl spacer length is presented, and their molecular structural effect on the intermolecular hydrogen bonding and steric repulsion is examined. In pristine states, even-parity DAs were inactive upon UV irradiation (λ=254 nm) unless external pressure was applied. By contrast, odd-parity DAs were easily polymerized upon UV irradiation without pressure application. However, the pressure-induced crystalline phase transition exhibiting photopolymerization was valid for all DAs regardless of their alkyl spacer length. A systematic investigation revealed that the terminal alkyl spacer length, especially its odd/even parity plays a key role in determining the intrinsic intermolecular hydrogen-bonding nature of DA crystals and the resultant molecular packing. In addition, the relevant thermochromic behavior was also observed from photopolymerized polydiacetylenes.

10.
Langmuir ; 37(44): 13160-13169, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34706543

RESUMO

A series of simply structured diacetylene-diamide-based gelators (DAGs) with aromatic terminals were synthesized, and their gelation and subsequent photopolymerization abilities were analyzed. DAGs with an adequate spacer length (n) and tolyl terminals (DA-Tn) interacted with aromatic solvents, such as benzene and xylenes, at elevated temperatures. During the subsequent cooling process, the DAGs interacted with each other through CH-π interactions at their terminal positions. They also formed one-dimensional hydrogen bonding arrays through secondary amides, leading to stable organogels. These gels polymerized into π-conjugated polydiacetylenes (PDAs) under ultraviolet irradiation. In the p-xylene gels of DA-Tn, the spacer length exerted characteristic odd-even effects on the photopolymerization rates over a certain range (n = 3-6), which can be explained by periodic changes in the uniformity of the molecular packing modes. When the gelling solvent was changed to cyclohexane, the gelation and photopolymerization abilities were greatly improved because the DA-Tn gel networks became highly crystallized and transparent to ultraviolet light (254 nm). The ultimate conversion to PDA from DA-T8/cyclohexane gels was 45.2 wt %. Applying photolithographic techniques to the DAG with excellent photopolymerizability in the film state, we successfully fabricated microscale photopatterns of PDA. We also established a convenient removal process (development process) of DA monomers in unexposed areas. The resulting PDA patterns were quite stable to ambient light stimuli.

11.
Org Biomol Chem ; 19(32): 6979-6984, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346473

RESUMO

In the emerging field of photopharmacology, synthetic photoswitches based on reversible photochemical reactions are fused to bioactive molecules. Azobenzene derivatives, which can undergo trans-cis photoisomerization, are typical photoswitches. Most azobenzene-based photochemical tools are active in the thermodynamically stable trans, but not cis, form. cis-Active photochemical tools would be ideal because they can be "initially inactive and active after light illumination" in a reversible mode only by light illumination. However, only a few rational strategies for constructing such "lit-active" photopharmacological tools has been developed. Herein, we report a rationally designed lit-active photoswitchable inhibitor targeting centromere-associated protein E (CENP-E). Using the lit-active inhibitor, we were able to photoregulate CENP-E-dependent mitotic chromosome location in cells. This study provides a framework to facilitate further progress in the development of photopharmacological tools.

12.
J Am Chem Soc ; 142(4): 1763-1767, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31927956

RESUMO

Interfering with mitosis is a potential cancer therapy strategy. However, the lack of controllability of antimitotic drugs in cell growth suppression causes severe side effects and limits their clinical utility. Herein, we developed an azobenzene-based photoswitchable inhibitor of CENP-E, a mitotic kinesin required for chromosome transportation. The new inhibitor enabled reversible photoswitching of CENP-E activity with ∼10-fold change in IC50 between cis and trans photoisomerization states both in vitro and in living cells. It also enabled repeatable photoswitching of CENP-E-dependent chromosome congression and hence mitotic progression with UV/vis light illumination cycles. Using this technique, we could specify the exact process of mitotic progression in which CENP-E plays an indispensable role. Our data demonstrate the power of a photochemical approach for highly controllable mitotic interference as well as for discovery of precise molecular functions in dynamic cellular processes.

13.
Org Biomol Chem ; 18(32): 6312-6327, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32748909

RESUMO

In this study we substituted the retinal units in proteorhodopsin (PR) and bacteriorhodopsin (BR) with azo chromophores to investigate the mechanism of photoinduced proton pumping in rhodopsins and potentially develop new artificial molecular pumps. We used an indium tin oxide electrode to investigate the photoinduced proton transfer of the azo analogues of PR and BR. We also employed flash photolysis to determine the characteristic photocycles, comprising multiple transient intermediates, of the azo chromophore-bound PR and BR. Moreover, our studies of the photoinduced proton pumping functions of azo-proteoopsin and azo-bacterioopsin complexes revealed that they did not pump protons upon illumination, even though they underwent photoinduced proton transfer and the characteristic photocycle. Mutational analysis suggested that the proton pumping malfunction of the azo analogues of PR and BR resulted from the absence of proton transfer reactions through cytoplasmic channels, even though these reactions were evoked in extracellular channels. Based on our experimental findings, we propose herein a putative model of the proton transfer reaction mechanism for the azo analogues of PR and BR.


Assuntos
Bacteriorodopsinas/química , Rodopsinas Microbianas/química , Processos Fotoquímicos , Conformação Proteica , Estereoisomerismo
14.
Chemistry ; 25(24): 6162-6169, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30860632

RESUMO

The mechanoresponsive behavior and photochemical response of a new bis(cyanostyryl)benzene fluorophore (CSB-5) were investigated. Green fluorescence with λem,max of 507 nm was found for CSB-5 in chloroform solution, mirroring the behavior of a previously reported similar dye (CSB-6). Alternatively, crystalline samples of CSB-5 exhibited orange fluorescence with λem,max of 620 nm, attributable to excimer emission. Although the emission color change was not clearly noticeable by naked eye, CSB-5 exhibited mechanochromic luminescence, due to transformation into the amorphous state upon grinding the crystalline powder. Interestingly, rubbed films of CSB-5 prepared on glass substrates exhibited a pronounced emission color change from orange to green when exposed to UV light. This response is the result of a photochemical reaction that occurs in the amorphous state and which causes a decrease of the excimer emission sites so that the emission color changes from excimer to monomer. The crystalline material did not display such a photoinduced emission color change and the difference in photochemical reactivity between crystalline and amorphous states was exploited to pattern the emission color of rubbed films.

15.
J Am Chem Soc ; 140(5): 1584-1587, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29355316

RESUMO

The integration of mechanophores, motifs that transduce mechanical forces into chemical reactions, allows creating materials with stress-dependent properties. Typical mechanophores are activated by cleaving weak covalent bonds, but these reactions can also be triggered by other stimuli, and this renders the behavior unspecific. Here we show that this problem can be overcome by extending the molecular-shuttle function of rotaxanes to mechanical activation. A mechanically interlocked mechanophore composed of a fluorophore-carrying macrocycle and a dumbbell-shaped molecule containing a matching quencher was integrated into a polyurethane elastomer. Deformation of this polymer causes a fluorescence turn-on, due to the spatial separation of fluorophore and quencher. This process is specific, efficient, instantly reversible, and elicits an easily detectable optical signal that correlates with the applied force.

16.
Org Biomol Chem ; 17(1): 53-65, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30534753

RESUMO

Linear motor proteins including kinesin and myosin are promising biomaterials for developing nano-devices. Photoswitchable substrates of these biomotors can be used to optically regulate the motility of their associated cytoskeletal filaments in in vitro systems. Here, we describe the discovery of the myosin selective azobenzene-tethered triphosphate. It enables the specific photocontrol over myosin in a reversible mode with the composite motility assay composed of both kinesin and myosin. The mechanistic insight into this myosin selectivity is also explained with the docking simulation study.


Assuntos
Cinesinas/química , Proteínas Motores Moleculares/química , Miosinas/química , Processos Fotoquímicos , Polifosfatos/química , Compostos Azo , Ensaios de Migração Celular , Simulação de Acoplamento Molecular , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 57(11): 2806-2810, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363244

RESUMO

Reversible emission color switching of triplet-triplet annihilation-based photon upconversion (TTA-UC) is achieved by employing an Os complex sensitizer with singlet-to-triplet (S-T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10-bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near-infrared-to-visible TTA-UC. The large anti-Stokes shift is possible by the direct S-T excitation, which dispenses with the use of a conventional sequence of singlet-singlet absorption and intersystem crossing. The TTA-UC emission color is successfully switched between green and yellow by thermal stimulation.

18.
Org Biomol Chem ; 15(42): 8894-8903, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28902195

RESUMO

We employed an azobenzene based non-nucleoside triphosphate, AzoTP, in a myosin-actin motile system and demonstrated its efficiency as an energy molecule to drive and photo-regulate the myosin-actin motile function at the macroscopic level along with an in vitro motility assay. The AzoTP in its trans state induced shortening of a glycerinated muscle fibre whilst a cis isomer had no significant effect. Direct photoirradiation of a cis-AzoTP infused muscle fibre induced shortening triggered by a locally photo-generated trans-AzoTP in the muscle fibre. Furthermore, we designed and synthesized three new derivatives of AzoTPs that served as substrates for myosin by driving and photo-regulating the myosin-actin motile function at the molecular as well as the macroscopic level with varied efficiencies.


Assuntos
Actinas/química , Compostos Azo/química , Fibras Musculares Esqueléticas/química , Miosinas/química , Polifosfatos/química , Actinas/metabolismo , Animais , Compostos Azo/síntese química , Galinhas , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/metabolismo , Miosinas/metabolismo , Processos Fotoquímicos , Polifosfatos/síntese química
19.
Org Biomol Chem ; 14(30): 7202-10, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27270305

RESUMO

Recently we demonstrated the photoregulation of the activity of kinesin-1 using an azobenzene-tethered peptide (azo-peptide: Azo-Ile-Pro-Lys-Ala-Ile-Gln-Ala-Ser-His-Gly-Arg-OH). To understand the mechanism behind this photoswitchable inhibition, here we studied the structure-property relationships of a range of azo-peptides through systematic variations in the structures of the peptide and azobenzene units. The vital peptide sequence for kinesin inhibition-mediated through electrostatic, hydrophobic and C-Hπ interactions-was the same as that for the self-inhibition of kinesin. We also identified substituents on the azobenzene capable of enhancing the photoswitchability of inhibition. As a result, we developed a new inhibitor featuring a relatively short peptide unit (-Arg-Ile-Pro-Lys-Ala-Ile-Arg-OH) and an azobenzene unit bearing a para-OMe group. In the trans form of its azobenzene unit, this finely tuned inhibitor stopped the kinesin-driven gliding motility of microtubules completely at a relatively low concentration, yet allowed gliding motility with a relatively high velocity in the cis form obtained after UV irradiation.


Assuntos
Compostos Azo/síntese química , Cinesinas/antagonistas & inibidores , Peptídeos/síntese química , Fármacos Fotossensibilizantes/antagonistas & inibidores , Sequência de Aminoácidos , Compostos Azo/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Luz , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Imagem Óptica/métodos , Peptídeos/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
20.
Beilstein J Org Chem ; 12: 2211-2215, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829929

RESUMO

Single crystal X-ray diffraction has been used as one of the common methods for the unambiguous determination of the absolute stereostructure of chiral molecules. However, this method is limited to molecules containing heavy atoms or to molecules with the possibility of functionalization with heavy elements or chiral internal references. Herein, we report the determination of the absolute stereostructure of the enantiomers of molecule (E)-2, which lacks the possibility of functionalization, using a reverse method, i.e., defunctionalization of its precursor of known stereostructure with bromine substitution (S-(-)-(E)-1). A reductive debromination of S-(-)-(E)-1 results in formation of one of the enantiomers of (E)-2. Using a combination of HPLC and CD spectroscopy we could safely assign the stereostructure of one of the enantiomers of (E)-2, the reduced product R-(-)-(E)-1.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa