Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(20): 10436-10441, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31066394

RESUMO

We investigate by fast-scanning nanocalorimetry the formation of Freon 113 films from the vapor phase at deposition temperatures ranging from 50 to 120 K, that is, spanning above and below the transition temperature of the glassy crystal to the plastic crystal (Tgc = 72 K). Analysis of the heat capacity curves indicates that vapor deposition at T < Tgc of the highly fragile Freon 113 yields structural and orientational glasses in the as-deposited state depending on the temperature range of deposition. Interestingly, growing above Tgc produces plastic crystals with a conformational ratio C1/Cs that changes with Tdep above and below 110-120 K, the temperature at which previous works have identified the arrest of the transformations between the C1 and Cs conformers.

2.
Phys Rev Lett ; 118(10): 105701, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339247

RESUMO

We present a dynamic and thermodynamic study of the orientational glass former Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane, CCl_{2}F-CClF_{2}) in order to analyze its kinetic and thermodynamic fragilities. Freon 113 displays internal molecular degrees of freedom that promote a complex energy landscape. Experimental specific heat and its microscopic origin, the vibrational density of states from inelastic neutron scattering, together with the orientational dynamics obtained by means of dielectric spectroscopy have revealed the highest fragility value, both thermodynamic and kinetic, found for this orientational glass former. The excess in both Debye-reduced specific heat and density of states (boson peak) evidences the existence of glassy low-energy excitations. We demonstrate that early proposed correlations between the boson peak and the Debye specific heat value are elusive as revealed by the clear counterexample of the studied case.

3.
Phys Rev Lett ; 119(21): 215506, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219416

RESUMO

The low-temperature thermal and transport properties of an unusual kind of crystal exhibiting minimal molecular positional and tilting disorder have been measured. The material, namely, low-dimensional, highly anisotropic pentachloronitrobenzene has a layered structure of rhombohedral parallel planes in which the molecules execute large-amplitude in-plane as well as concurrent out-of-plane librational motions. Our study reveals that low-temperature glassy anomalies can be found in a system with minimal disorder due to the freezing of (mostly in-plane) reorientational jumps of molecules between equivalent crystallographic positions with partial site occupation. Our findings will pave the way to a deeper understanding of the origin of the above-mentioned universal glassy properties at low temperature.

4.
Phys Chem Chem Phys ; 19(30): 20259-20266, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28726892

RESUMO

Globular molecules of 1-chloroadamantane form a plastic phase in which the molecules rotate in a restrained way, but with their centers of mass forming a crystalline ordered lattice. Plastic phases can be regarded as test cases for the study of disordered phases since, contrary to what happens in the liquid phase, there is a lack of stochastic translational degrees of freedom. When the temperature is increased, a hump in the specific heat curve is observed indicating a change in the energetic footprint of the dynamics of the molecules. This change takes place without a change in the symmetry of the crystalline lattice, i.e. no first-order transition is observed between temperatures below and above the calorimetric hump. This implies that subtle changes in the dynamics of the disordered plastic phase concerning purely orientational degrees of freedom should appear at the thermodynamic anomaly. Accordingly, we describe, for the first time, the microscopic mechanisms behind a disorder-disorder transition through the analysis of neutron diffraction and QENS experiments. The results evince a change in the molecular rotational dynamics accompanied by a continuous change in density.

5.
Phys Chem Chem Phys ; 18(16): 10924-30, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27040739

RESUMO

The polymorphism and the dynamics of a simple rigid molecule (1-fluoro-adamantane) have been studied by means of X-ray powder diffraction and broadband dielectric spectroscopy. At temperatures below the melting point, the molecule forms an orientationally disordered Phase I with a cubic-centered structure (Phase I, Fm3¯m, Z = 4). This phase possesses eight equilibrium positions for the fluorine atom, with equal occupancy factors of 1/8. A solid-solid phase transition to a low-temperature tetragonal phase (Phase II, P4¯2(1)c, Z = 2) reduces the statistical disorder to only four possible equivalent sites for the fluorine atom, with fractional occupancies of 1/4. The dynamics has been rationalized under the constraints imposed by the space group of the crystal structure determined by powder X-ray diffraction. The dielectric spectroscopy study reveals that the statistical disorder in Phase II is dynamic in character and is associated with reorientational jumps along the two- and three-fold axes. In the dielectric loss spectra, the cooperative (α) relaxation exhibits a shoulder on the high-frequency side. This remarkable finding clearly reveals the existence of two intrinsic reorientational processes associated with the exchange of the F atom along the four sites. In addition to such "bimodal" relaxation, a secondary Johari-Goldstein relaxation is detected at lower temperatures.

6.
J Chem Phys ; 144(16): 164505, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27131555

RESUMO

We employ dielectric spectroscopy and molecular dynamic simulations to investigate the dipolar dynamics in the orientationally disordered solid phase of (1,1,2,2)tetrachloroethane. Three distinct orientational dynamics are observed as separate dielectric loss features, all characterized by a simply activated temperature dependence. The slower process, associated to a glassy transition at 156 ± 1 K, corresponds to a cooperative motion by which each molecule rotates by 180° around the molecular symmetry axis through an intermediate state in which the symmetry axis is oriented roughly orthogonally to the initial and final states. Of the other two dipolar relaxations, the intermediate one is the Johari-Goldstein precursor relaxation of the cooperative dynamics, while the fastest process corresponds to an orientational fluctuation of single molecules into a higher-energy orientation. The Kirkwood correlation factor of the cooperative relaxation is of the order of one tenth, indicating that the molecular dipoles maintain on average a strong antiparallel alignment during their collective motion. These findings show that the combination of dielectric spectroscopy and molecular simulations allows studying in great detail the orientational dynamics in molecular solids.

7.
Phys Chem Chem Phys ; 17(24): 16053-7, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26028052

RESUMO

We probe the ionic conduction and the molecular dynamics in a pure and lithium-salt doped dinitrile molecular plastic crystal. While the diffusion of the Li(+) ions is decoupled from the molecular reorientational dynamics, in the undoped plastic crystal the temperature dependence of the mobility of dinitrile ions and thus of the conductivity is virtually identical to that of on-site molecular rotations. The undoped material is found to obey the Walden and Stokes-Einstein rules typical of ideal liquid electrolytes, implying that an effective viscosity against diffusion can be defined even for a plastic crystalline phase. These surprising results, never reported before in a translationally ordered solid, indicate that in this dinitrile plastic crystalline material the timescale of translational diffusion is perfectly correlated with that of the purely reorientational on-site dynamics.

8.
J Chem Phys ; 143(8): 084510, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328859

RESUMO

The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F-CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl2F-CCl2F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature range.

9.
Phys Chem Chem Phys ; 16(44): 24479-83, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25308564

RESUMO

It is hitherto thought that liquid water is composed of tetrahedrally coordinated molecules with an asymmetric interaction of the central molecule with neighboring molecules. Kühne et al., Nat. Commun., 2013, 4, 1450 suggested that this asymmetry, energetic rather than geometric, is the cornerstone to reconcile the homogeneous and inhomogeneous viewpoints of liquid water. In order to investigate the geometric origin of that asymmetry, we have scrutinized Molecular Dynamics (MD) simulations of water through a careful analysis of the five-dimensional probability distribution function of Euler angles in which the relative positions and orientations of water molecules are obtained. We demonstrate that, beyond the ubiquitous tetrahedral structure with well-defined molecular dimers, there is a series of possible molecular orientations that define the structure. These orientations are generated by rotating the neighboring molecule around the O-H axis that is involved in the hydrogen bond scheme. Two of the possible orientations have a higher probability, giving rise to two kinds of dimers: one close to the lowest energy of a water dimer in vacuum with an almost perpendicular alignment of the dipole moment, and another one with a parallel orientation of the dipole moment which is less tightly bound. These two different dimers have an effect on the orientation of further water dipole moments up to a distance of ≈6 Å. Liquid water can therefore be described as a continuous mixture of two kinds of dimers where the hydrogen bonds have the same geometry but the interaction energies are different due to a different mutual orientation of the dipoles of the participating water molecules.


Assuntos
Água/química , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular
10.
Sci Rep ; 13(1): 11914, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488270

RESUMO

For over a century, it was thought that the crystalline polymorph II of benzophenone does not possess a stable domain in the pressure-temperature phase diagram. With a combination of new experimental results and literature data, this case of crystalline dimorphism has finally been solved and it is shown that form II possesses a stable domain at high pressure and high temperature, even though its density is lower than that of form I, the stable form under ordinary pressure and temperature conditions. The phase diagram of benzophenone is a clear demonstration of the fact that to understand the phase behaviour of a chemical substance both the exchange of heat (due to the change in intermolecular interactions) and work (due to the change of volume at a given pressure) need to be taken into account.

11.
J Chem Phys ; 137(5): 054506, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894363

RESUMO

Glassy dynamics of rigid molecules is still a matter of controversy: the physics behind the relaxation process at time scales faster than that ruled by the viscosity, the so called Johari-Goldstein process, is not known. In this work we unravel the mechanism of such a process by using a simple molecular model in which the centers of mass of the molecules are forming an ordered lattice, and molecular reorientation is performed by jumps between equilibrium orientations. We have studied the dynamics of simple quasi-tetrahedral molecules CBr(n)Cl(4-n), n = 0, 1, 2, in their monoclinic phases by means of dielectric spectroscopy and nuclear quadrupole resonance: the first technique allows to measure in a broad time scale but it is insensitive to molecular particularities, while the second has a restricted time window but senses the movement of each chlorine atom separately. The dynamic picture emerging from these techniques is that the secondary relaxation process is related to the different molecular surroundings around each nonequivalent atom of the molecule. Dynamical heterogeneities thus seem to be the cause of the secondary relaxation in this simple model of glass.

12.
J Chem Phys ; 136(12): 124514, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22462881

RESUMO

Trans-1,2-dichloroethene (HClC=CClH) has several structural and dynamic anomalies between its low- and high-density liquid, previously found through neutron scattering experiments. To explain the microscopic origin of the differences found in those experiments, a series of molecular dynamics simulations were performed. The analysis of molecular short-range order shows that the number of molecules in the first neighbor shell is 12 for the high-density liquid and 11 for the low-density one. It also shows that the angular position of the center of mass of the first neighbor is roughly the same although the molecular orientation is not. In both liquids the first neighbor and its reference molecule arrange mainly in two configurations, each being the most probable in one of the liquids. First neighbors in the configuration that predominates in the high-density liquid tend to locate themselves closer to the reference molecule, an evidence that they are more strongly bonded. This arrangement facilitates a better packing of the rest of molecules in the first neighbor shell so that on average an additional molecule can be included, and is proposed to be the key in the explanation of all the observed anomalies in the characteristics of both liquids.


Assuntos
Dicloroetilenos/química , Simulação de Dinâmica Molecular , Água/química , Ligação de Hidrogênio , Modelos Moleculares , Termodinâmica
13.
Int J Pharm ; 624: 122047, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35902055

RESUMO

The dimorphism of the corticosteroid anti-inflammatory drug prednisolone has been investigated by the construction of a topological pressure-temperature phase diagram, using crystallographic and calorimetric data. The system is enantiotropic, because the temperature of the I-II equilibrium under atmospheric conditions (400-463 K) is lower than that of the two melting equilibria (518.7 K for form II and 526.3 K for form I). The slope of the I-II equilibrium in the pressure-temperature phase diagram is negative and relatively steep; therefore, form II, which is the stable form at room temperature, will not easily encounter conditions where form I will become stable even under industrial processing conditions. On the other hand, extreme small amounts of form I have been observed to spontaneously transform into form II in a time interval of about six years at room temperature and it can be concluded that although form I is very persistent under ambient conditions, it does slowly convert into form II. Moreover, the system does not obey the density rule.


Assuntos
Prednisolona , Caracteres Sexuais , Calorimetria , Varredura Diferencial de Calorimetria , Cristalização , Temperatura , Termodinâmica
14.
J Chem Phys ; 134(2): 024512, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241125

RESUMO

For decades the Vogel-Fulcher-Tammann equation has dominated the description of dynamics of the non-Arrhenius behavior in glass forming systems. Recently, this dominance has been questioned. Hecksher et al. [Nat. Phys. 4, 737 (2008)], Elmatad et al. [J. Phys. Chem. B 113, 5563 (2009)], and Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)] indicated superiority of several equations showing no divergence at a finite (nonzero) temperature. This paper shows distortion-sensitive and derivative based empirical analysis of the validity of leading equations for portraying the previtreous evolution of primary relaxation time.

15.
J Chem Phys ; 134(14): 144505, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21495762

RESUMO

Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly discussed.

16.
J Phys Chem Lett ; 12(8): 2112-2117, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625859

RESUMO

We measured the specific heat Cp of normal (C4H4S) and deuterated (C4D4S) thiophene in the temperature interval of 1 ≤ T, K ≤ 25. C4H4S exhibits a metastable phase II2 and a stable phase V, both with frozen orientational disorder (OD), whereas C4D4S exhibits a metastable phase II2, which is analogous to the OD phase II2 of C4H4S and a fully ordered stable phase V. Our measurements demonstrate the existence of a large bump in the heat capacity of both stable and metastable C4D4S and C4H4S phases at temperatures of ∼10 K, which significantly departs from the expected Debye temperature behavior of Cp ≈ T3. This case study demonstrates that the identified low-temperature Cp anomaly, typically referred to as a "Boson-peak" in the context of glassy crystals, is not exclusive of disordered materials.

17.
J Chem Phys ; 132(16): 164516, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20441297

RESUMO

The alpha-relaxation dynamics of 1-cyano-adamantane (CNA) and its mixtures with 1-chloro-adamantane (ClA) has been studied by means of broadband dielectric spectroscopy. The existence of orientationally disordered (OD) face centered cubic mixed crystals (ClA(1-X)CNA(X)) for 0.5 < or = X < or = 1 has been put in evidence by thermodynamics and structural analyses. In addition to the OD phase of CNA, mixed crystals with compositions higher than the equimolar one exhibit a freezing of the orientational degrees of freedom into a glassy state, which involves also a strong increase of the antiferroelectric order at temperatures higher than the dielectric glass transition temperature. This experimental evidence is revealed by a stairlike effect in the variation of the Kirkwood factor with the temperature as a consequence of a twin effect in the dielectric strength without any anomaly in the temperature-density curves. The characteristic relaxation times are analyzed as a function of temperature and mole fraction. By setting a common temporal origin ("isochronal origin") at tau(T(g)) = 100 s for each mole fraction, it emerges that the substitution of ClA molecules by those of CNA (diminution of X) gives rise to a slow down in the dynamics, despite that the molecular volume of ClA molecules are smaller than those of CNA. This fact goes along and is accompanied by a diminution of the lattice packing with the decrease of composition. It is also shown that the heterogeneities produced by the concentration fluctuations due to the chemical disorder are the main contribution to the non-exponential character of the alpha-relaxation peaks.

18.
J Chem Phys ; 131(18): 184504, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19916609

RESUMO

The evolution of the primary relaxation time of orientationally disordered (OD) mixed crystals [(CH(3))(2)C(CH(2)OH)(2)](1-X)[(CH(3))C(CH(2)OH)(3)](X), with 0 < X < or = 0.5, on approaching the glass temperature (T(g)) is discussed. The application of the distortion-sensitive, derivative-based procedure revealed a limited adequacy of the Vogel-Fulcher-Tammann parametrization and a superiority of the critical-like description tau proportional to (T - T(C))(-phi(') ), phi(') = 9-11.5, and T(C) approximately T(g) - 10 K. Basing on these results as well as that of Drozd-Rzoska et al. [J. Chem. Phys. 129, 184509 (2008)] the question arises whether such behavior may be suggested as the optimal universal pattern for dynamics in vitrifying OD crystals (plastic crystals). The obtained behavior is in fair agreement with the dynamic scaling model (DSM) [R. H. Colby, Phys. Rev. E 61, 1783 (2000)], originally proposed for vitrifying molecular liquids and polymers. The application of DSM made it possible to estimate the size of the cooperatively rearranging regions ("heterogeneities") in OD phases near T(g).

19.
Int J Pharm ; 572: 118812, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715343

RESUMO

Information about the solid-state properties of etifoxine has been lacking, even if the active pharmaceutical ingredient has been used for its anxiolytic properties for decennia. The crystal structure of the racemic compound possesses a monoclinic space group P21/n with cell parameters a = 8.489(2) Å, b = 17.674(2) Å, c = 20.883(3) Å, ß = 98.860(10)° and a unit-cell volume of 3095.8(9) Å3 at 293 K. The unit cell contains 8 molecules, while 2 independent molecules with different conformations are present in the asymmetric unit. The density of the crystal is 1.291 g/cm3 and its melting point was found at 362.6 ±â€¯0.3 K with a melting enthalpy of 85.6 ±â€¯3.0 J g-1. Its thermal expansion in the liquid and the solid state and the change in volume on melting and between the vitreous state and the crystalline solid have been studied. The results confirm the tendency of small organic molecules to increase about 11% in volume on melting, while the volume difference between the glass and the crystal at the glass transition temperature is about half this value at 6%. These values can be used in the construction of phase diagrams in the case that the experimental data for a given system is incomplete.


Assuntos
Ansiolíticos/química , Química Farmacêutica , Oxazinas/química , Cristalização , Transição de Fase , Pressão , Estereoisomerismo , Temperatura , Termodinâmica , Temperatura de Transição
20.
Nat Commun ; 10(1): 1803, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000715

RESUMO

There is currently great interest in replacing the harmful volatile hydrofluorocarbon fluids used in refrigeration and air-conditioning with solid materials that display magnetocaloric, electrocaloric or mechanocaloric effects. However, the field-driven thermal changes in all of these caloric materials fall short with respect to their fluid counterparts. Here we show that plastic crystals of neopentylglycol (CH3)2C(CH2OH)2 display extremely large pressure-driven thermal changes near room temperature due to molecular reconfiguration, that these changes outperform those observed in any type of caloric material, and that these changes are comparable with those exploited commercially in hydrofluorocarbons. Our discovery of colossal barocaloric effects in a plastic crystal should bring barocaloric materials to the forefront of research and development in order to achieve safe environmentally friendly cooling without compromising performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa