Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(4): 585-588, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38394343

RESUMO

Discoveries made in the past decades have brought out that, in addition to their classical primary defensive functions against infections, polymorphonuclear neutrophils play key effector roles not only in chronic inflammatory and immune-mediated diseases but also in cancer. In addition, depending on their differentiation/activation status and/or on the physiological or pathological microenvironment in which they reside, neutrophils have been shown to behave as highly plastic cells, able to acquire new phenotypes/functional states. All these features are well manifested in cancer and modulated during tumor progression. Herein, we discuss intriguing data by Lai Ng's group that have shed light on the origin and development of terminally differentiated, proangiogenic, tumor-associated neutrophils, facilitating tumor growth in a murine orthotopic model of pancreatic ductal adenocarcinoma. These findings help to progress toward the ambitious goal of selectively targeting only the skewed pathological neutrophil populations present within the tumor microenvironment.


Assuntos
Neutrófilos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neutrófilos/patologia , Microambiente Tumoral/fisiologia
2.
J Leukoc Biol ; 115(4): 695-705, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38114064

RESUMO

The advent of recent cutting-edge technologies has allowed the discovery and characterization of novel progenitors of human neutrophils, including SSCloCD66b+CD15+CD11b-CD49dhiproNeu1s, SSChiCD66b+CD15+CD11b-CD49dintproNeus2s, CD66b+CD15+CD11b+CD49d+CD101-preNeus, and Lin-CD66b+CD117+CD71+eNePs. In this research field, we recently identified CD66b-CD38+CD64dimCD115-, CD34+, and CD34dim/- cells exclusively committed to the neutrophil lineage (which we renamed as CD34+ and CD34dim/- neutrophil-committed progenitors), representing the earliest neutrophil precursors identifiable and sorted by flow cytometry. Moreover, based on their differential CD34 and CD45RA expression, we could identify 4 populations of neutrophil-committed progenitors: CD34+CD45RA-/NCP1s, CD34+CD45RA+/NCP2s, CD34dim/-CD45RA+/NCP3s, and CD34dim/-CD45RA-/NCP4s. This said, a very recent study by Ikeda and coworkers (PMID: 36862552) reported that neutrophil precursors, termed either neutrophil progenitors or "early neutrophil-committed progenitors," would generate immunosuppressive neutrophil-like CXCR1+CD14+CD16- monocytes. Hence, presuming that neutrophil progenitors/"early neutrophil-committed progenitors" correspond to neutrophil-committed progenitors, the selective neutrophil commitment that we attributed to neutrophil-committed progenitors is contradicted by Ikeda and coworkers' article. In this study, by performing a more analytical reevaluation at the phenotypic and molecular levels of the cells generated by neutrophil-committed progenitors 2 and 4 (selected as representatives of neutrophil-committed progenitors), we categorically exclude that neutrophil-committed progenitors generate neutrophil-like CXCR1+CD14+CD16- monocytes. Rather, we provide substantial evidence indicating that the cells generated by neutrophil progenitors/"early neutrophil-committed progenitors" are neutrophilic cells at a different stage of maturation, displaying moderate levels of CD14, instead of neutrophil-like CXCR1+CD14+CD16- monocytes, as pointed by Ikeda and coworkers. Hence, the conclusion that neutrophil progenitors/"early neutrophil-committed progenitors" aberrantly differentiate into neutrophil-like monocytes derives, in our opinion, from data misinterpretation.


Assuntos
Monócitos , Neutrófilos , Humanos , Neutrófilos/metabolismo , Monócitos/metabolismo , Antígenos CD34/metabolismo , Citometria de Fluxo
3.
Cell Rep Med ; 5(2): 101380, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242120

RESUMO

Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Neutrófilos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neoplasias/patologia , Antígeno CD52/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa