Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3627-3638, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35556158

RESUMO

PURPOSE: Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the ß-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS: The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION: We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Actínio , Linhagem Celular Tumoral , DNA , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Lutécio/uso terapêutico , Masculino , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Radioisótopos
3.
Theranostics ; 14(9): 3693-3707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948062

RESUMO

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Assuntos
Anidrase Carbônica IX , Carcinoma de Células Renais , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Neoplasias Renais/radioterapia , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Radioisótopos/uso terapêutico , Radioisótopos/farmacologia , Radioisótopos/administração & dosagem , Lutécio/uso terapêutico , Feminino , Antígenos de Neoplasias/metabolismo , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Proteína Tumoral 1 Controlada por Tradução , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Combinada/métodos , Camundongos Endogâmicos BALB C , Anticorpos Monoclonais
4.
Phys Med ; 107: 102543, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780792

RESUMO

PURPOSE: To evaluate the effectiveness of currently available radioprotective (RP) devices in reducing the dose to interventional cardiology staff, especially to the eye lens and brain. METHODS: The performances of five RP devices (masks, caps, patient drapes, staff lead and lead-free aprons and Zero-Gravity (ZG) suspended radiation protection system) were assessed by means of Monte Carlo (MC) simulations. A geometry representative of an interventional cardiology setup was modelled and several configurations, including beam projections and staff distance from the source, were investigated. In addition, measurements on phantoms were performed for masks and drapes. RESULTS: An average dose reduction of 65% and 25% to the eyes and the brain respectively was obtained for the masks by MC simulations but a strong influence of the design was observed. The cap effectiveness for the brain ranges on average between 13% and 37%. Nevertheless, it was shown that only some upper parts of the brain were protected. There was no significant difference between the effectiveness of lead and lead-free aprons. Of all the devices, the ZG system offered the highest protection to the brain and eye lens and a protection level comparable to the apron for the organs normally covered. CONCLUSION: All investigated devices showed potential for dose reduction to specific organs. However, for masks, caps and drapes, it strongly depends on the design, exposure conditions and staff position. Therefore, for a clinical use, it is recommended to evaluate their effectiveness in the planned conditions of use.


Assuntos
Cardiologia , Cristalino , Exposição Ocupacional , Exposição à Radiação , Proteção Radiológica , Humanos , Proteção Radiológica/métodos , Radiometria/métodos , Doses de Radiação , Exposição à Radiação/prevenção & controle , Cardiologia/métodos , Exposição Ocupacional/prevenção & controle , Radiologia Intervencionista/métodos
5.
Phys Med ; 96: 90-100, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245708

RESUMO

PURPOSE: To model dose-response relationships for in vivo experiments with radiolabelled peptides enabling maximum therapeutic efficacy while limiting toxicity to kidney and bone marrow. METHODS: A multiregional murine kidney phantom, with a kinetic model for cortex and outer medulla distribution, were used to predict renal toxicity. Maximum tolerated activities to avoid nephrotoxicity (at 40 Gy Biological Effective Dose BED) and hematologic toxicity (at 2 Gy) were compared. The therapeutic efficacy of 90Y, 161Tb, 177Lu and 213Bi was assessed at their respective maximum tolerated activities based on cellular-level dosimetry accounting for activity and tumor heterogeneity. These results were compared with average tumor-dosimetry-based predictions. RESULTS: The kidney was found to be the dose-limiting organ for all radionuclides, limiting the administered activity to 44 MBq 177Lu, 34 MBq 161Tb, 19 MBq 90Y and 13 MBq 213Bi , respectively. The average S-values for the initial heterogeneous activity distribution in the tumor volume are not significantly different from the homogeneous ones. The in vivo tumor cell survivals predicted by assuming uniform dose rate-distributions are not significantly different from those for heterogeneous dose rate-based predictions. The lowest in vivo survival was found for 213Bi (2%) followed by 161Tb (30%), 177Lu (37%) and 90Y (60%). The minimal effective dose rate for cell kill is 13-14 mGy/h for ß-emitters and 2.2 mGy/h for the α-particle emitter 213Bi, below these values proliferation takes over. CONCLUSIONS: Radionuclides emitting α-particles have the highest potential for improving therapeutic efficacy in tumors and metastases with uniform receptor expression, after careful evaluation of their burden to the healthy organs.


Assuntos
Neoplasias , Radioisótopos , Partículas alfa/uso terapêutico , Animais , Camundongos , Peptídeos , Radioisótopos/uso terapêutico , Radiometria/métodos
6.
J Nucl Med ; 63(1): 100-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33837068

RESUMO

Our rationale was to build a refined dosimetry model for 177Lu-DOTATATE in vivo experiments enabling the correlation of absorbed dose with double-strand break (DSB) induction and cell death. Methods: Somatostatin receptor type 2 expression of NCI-H69 xenografted mice, injected with 177Lu-DOTATATE, was imaged at 0, 2, 5, and 11 d. This expression was used as input to reconstruct realistic 3-dimensional heterogeneous activity distributions and tissue geometries of both cancer and heathy cells. The resulting volumetric absorbed dose rate distributions were calculated using the GATE (Geant4 Application for Tomographic Emission) Monte Carlo code and compared with homogeneous dose rate distributions. The absorbed dose (0-2 d) on micrometer-scale sections was correlated with DSB induction, measured by γH2AX foci. Moreover, the absorbed dose on larger millimeter-scale sections delivered over the whole treatment (0-14 d) was correlated to the modeled in vivo survival to determine the radiosensitivity parameters α and ß for comparison with experimental data (cell death assay, volume response) and external-beam radiotherapy. The DNA-damage repair half-life Tµ and proliferation doubling time TD were obtained by fitting the DSB and tumor volume data over time. Results: A linear correlation with a slope of 0.0223 DSB/cell mGy-1 between the absorbed dose and the number of DSBs per cell has been established. The heterogeneous dose distributions differed significantly from the homogeneous dose distributions, with their corresponding average S values diverging at 11 d by up to 58%. No significant difference between modeled in vivo survival was observed in the first 5 d when using heterogeneous and uniform dose distributions. The radiosensitivity parameter analysis for the in vivo survival correlation indicated that the minimal effective dose rates for cell kill was 13.72 and 7.40 mGy/h, with an α of 0.14 and 0.264 Gy-1, respectively, and an α/ß of 100 Gy; decreasing the α/ß led to a decrease in the minimal effective dose rate for cell kill. Within the linear quadratic model, the best matching in vivo survival correlation (α = 0.1 Gy-1, α/ß = 100 Gy, Tµ = 60 h, TD = 14.5 d) indicated a relative biological effectiveness of 0.4 in comparison to external-beam radiotherapy. Conclusion: Our results demonstrated that accurate dosimetric modeling is crucial to establishing dose-response correlations enabling optimization of treatment protocols.


Assuntos
Receptores de Somatostatina
7.
J Nucl Med ; 63(5): 761-769, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34503959

RESUMO

The aim of this study was to build a simulation framework to evaluate the number of DNA double-strand breaks (DSBs) induced by in vitro targeted radionuclide therapy (TRT). This work represents the first step toward exploring underlying biologic mechanisms and the influence of physical and chemical parameters to enable a better response prediction in patients. We used this tool to characterize early DSB induction by 177Lu-DOTATATE, a commonly used TRT for neuroendocrine tumors. Methods: A multiscale approach was implemented to simulate the number of DSBs produced over 4 h by the cumulated decays of 177Lu distributed according to the somatostatin receptor binding. The approach involves 2 sequential simulations performed with Geant4/Geant4-DNA. The radioactive source is sampled according to uptake experiments on the distribution of activities within the medium and the planar cellular cluster, assuming instant and permanent internalization. A phase space is scored around the nucleus of the central cell. Then, the phase space is used to generate particles entering the nucleus containing a multiscale description of the DNA in order to score the number of DSBs per particle source. The final DSB computations are compared with experimental data, measured by immunofluorescent detection of p53-binding protein 1 foci. Results: The probability of electrons reaching the nucleus was significantly influenced by the shape of the cell compartment, causing a large variance in the induction pattern of DSBs. A significant difference was found in the DSBs induced by activity distributions in cell and medium, as is explained by the specific energy ([Formula: see text]) distributions. The average number of simulated DSBs was 14 DSBs per cell (range, 7-24 DSBs per cell), compared with 13 DSBs per cell (range, 2-30 DSBs per cell) experimentally determined. We found a linear correlation between the mean absorbed dose to the nucleus and the number of DSBs per cell: 0.014 DSBs per cell mGy-1 for internalization in the Golgi apparatus and 0.017 DSBs per cell mGy-1 for internalization in the cytoplasm. Conclusion: This simulation tool can lead to a more reliable absorbed-dose-to-DNA correlation and help in prediction of biologic response.


Assuntos
Produtos Biológicos , Octreotida , DNA , Dano ao DNA , Humanos , Octreotida/efeitos adversos , Tomografia por Emissão de Pósitrons , Radioisótopos/uso terapêutico , Cintilografia , Compostos Radiofarmacêuticos/uso terapêutico
8.
EJNMMI Phys ; 7(1): 8, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040783

RESUMO

BACKGROUND: Survival and linear-quadratic model fitting parameters implemented in treatment planning for targeted radionuclide therapy depend on accurate cellular dosimetry. Therefore, we have built a refined cellular dosimetry model for [177Lu]Lu-DOTA-[Tyr3]octreotate (177Lu-DOTATATE) in vitro experiments, accounting for specific cell morphologies and sub-cellular radioactivity distributions. METHODS: Time activity curves were measured and modeled for medium, membrane-bound, and internalized activity fractions over 6 days. Clonogenic survival assays were performed at various added activities (0.1-2.5 MBq/ml). 3D microscopy images (stained for cytoplasm, nucleus, and Golgi) were used as reference for developing polygonal meshes (PM) in 3DsMax to accurately render the cellular and organelle geometry. Absorbed doses to the nucleus per decay (S values) were calculated for 3 cellular morphologies: spheres (MIRDcell), truncated cone-shaped constructive solid geometry (CSG within MCNP6.1), and realistic PM models, using Geant4-10.03. The geometrical set-up of the clonogenic survival assays was modeled, including dynamic changes in proliferation, proximity variations, and cell death. The absorbed dose to the nucleus by the radioactive source cell (self-dose) and surrounding source cells (cross-dose) was calculated applying the MIRD formalism. Finally, the correlation between absorbed dose and survival fraction was fitted using a linear dose-response curve (high α/ß or fast sub-lethal damage repair half-life) for different assumptions, related to cellular shape and localization of the internalized fraction of activity. RESULTS: The cross-dose, depending on cell proximity and colony formation, is a minor (15%) contributor to the total absorbed dose. Cellular volume (inverse exponential trend), shape modeling (up to 65%), and internalized source localization (up to + 149% comparing cytoplasm to Golgi) significantly influence the self-dose to nucleus. The absorbed dose delivered to the nucleus during a clonogenic survival assay is 3-fold higher with MIRDcell compared to the polygonal mesh structures. Our cellular dosimetry model indicates that 177Lu-DOTATATE treatment might be more effective than suggested by average spherical cell dosimetry, predicting a lower absorbed dose for the same cellular survival. Dose-rate effects and heterogeneous dose delivery might account for differences in dose-response compared to x-ray irradiation. CONCLUSION: Our results demonstrate that modeling of cellular and organelle geometry is crucial to perform accurate in vitro dosimetry.

9.
Radiat Prot Dosimetry ; 181(2): 120-128, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351645

RESUMO

Percutaneous coronary interventions (PCI) of coronary chronic total occlusions (CTO) increase the risk of high radiation exposure for both the patient and the cardiologist. This study evaluated the maximum dose to the patients' skin (MSD) and the exposure of the cardiologists during CTO-PCI. Moreover, the efficiency of radioprotective drapes to reduce cardiologist exposure was assessed. Patient dose was measured during 31 procedures; dose to the cardiologist's extremities were measured during 65 procedures, among which 31 were performed with radioprotective drapes. The MSD was high (median: 1254 mGy; max: 6528 mGy), and higher than 2 Gy for 33% of the patients. The dose to the cardiologists' extremities per procedure was also of concern (median: 25-465 µSv), particularly to the left eye (median: 68 µSv; max: 187 µSv). Radioprotective drapes reduced the exposure to physician's upper limbs and eyes; especially to the left side (from -28 to -49%).


Assuntos
Oclusão Coronária/cirurgia , Órgãos em Risco/efeitos da radiação , Intervenção Coronária Percutânea/métodos , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Pele/efeitos da radiação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Lesões por Radiação/etiologia , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa