Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 52(7): 3896-3910, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340341

RESUMO

The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.


Assuntos
Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , RNA/metabolismo , RNA/química , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Cinética , Clivagem do RNA , Hidrólise , Imagem Individual de Molécula , Ligação Proteica
2.
Mol Cell ; 62(2): 295-306, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105119

RESUMO

Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Streptococcus thermophilus/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Sistemas CRISPR-Cas/imunologia , DNA Bacteriano/genética , DNA Bacteriano/imunologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/imunologia , DNA Viral/genética , DNA Viral/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , Clivagem do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Viral/genética , RNA Viral/imunologia , DNA Polimerase Dirigida por RNA/genética , Streptococcus thermophilus/genética , Streptococcus thermophilus/imunologia , Streptococcus thermophilus/virologia , Fatores de Tempo
3.
Mol Cell ; 56(4): 506-17, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25458845

RESUMO

Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Clivagem do RNA , Streptococcus thermophilus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Streptococcus thermophilus/enzimologia , Difração de Raios X
4.
Nucleic Acids Res ; 48(16): 9204-9217, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766806

RESUMO

The type III CRISPR-Cas systems provide immunity against invading nucleic acids through the coordinated transcription-dependent DNA targeting and cyclic adenylate (cAn)-activated RNA degradation. Here, we show that both these pathways contribute to the Streptococcus thermophilus (St) type III-A CRISPR-Cas immunity. HPLC-MS analysis revealed that in the heterologous Escherichia coli host the StCsm effector complex predominantly produces cA5 and cA6. cA6 acts as a signaling molecule that binds to the CARF domain of StCsm6 to activate non-specific RNA degradation by the HEPN domain. By dissecting StCsm6 domains we demonstrate that both CARF and HEPN domains act as ring nucleases that degrade cAns to switch signaling off. CARF ring nuclease converts cA6 to linear A6>p and to the final A3>p product. HEPN domain, which typically degrades RNA, also shows ring nuclease activity and indiscriminately degrades cA6 or other cAns down to A>p. We propose that concerted action of both ring nucleases enables self-regulation of the RNase activity in the HEPN domain and eliminates all cAn secondary messengers in the cell when viral infection is combated by a coordinated action of Csm effector and the cA6-activated Csm6 ribonuclease.


Assuntos
Sistemas CRISPR-Cas/genética , Imunidade/genética , Streptococcus thermophilus/genética , Transcrição Gênica/genética , Cromatografia Líquida de Alta Pressão , Endonucleases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Domínios Proteicos/genética , Estabilidade de RNA/genética , Estabilidade de RNA/imunologia , Ribonucleases/genética , Transdução de Sinais/genética , Streptococcus thermophilus/imunologia , Transcrição Gênica/imunologia
5.
Nucleic Acids Res ; 47(2): 997-1010, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30445642

RESUMO

Restriction endonucleases (REs) of the CCGG-family recognize a set of 4-8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5'-CCNGG flip the central N nucleotides and 'compress' the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5'-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not 'compress' the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Mutação , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica
6.
Nucleic Acids Res ; 45(16): 9583-9594, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934493

RESUMO

Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Modelos Moleculares , Domínios Proteicos , Especificidade por Substrato
7.
Nucleic Acids Res ; 45(6): 3547-3558, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28039325

RESUMO

Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases.


Assuntos
Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/química , Apoenzimas/química , Pareamento de Bases , Domínio Catalítico , DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
8.
Sensors (Basel) ; 19(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375022

RESUMO

Wide bandgap AlGaN is one of the most promising materials for the fabrication of radiation hard, double-response particle detectors for future collider facilities. However, the formation of defects during growth and fabrication of AlGaN-based devices is unavoidable. Furthermore, radiation defects are formed in detector structures during operation at extreme conditions. In this work, study of evolution of the proton-induced luminescence spectra and short-circuit current has been simultaneously performed during 1.6 MeV proton irradiation. GaN and AlGaN (with various Al concentrations) epi-layers grown by metalorganic chemical vapour deposition technique and Schottky diode structures have been examined. Variations of spectral and electrical parameters could be applied for the remote dosimetry of large hadron fluences.

9.
Nucleic Acids Res ; 43(16): 8100-10, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240380

RESUMO

Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5'-W/CCGGW-3' (W stands for A or T, '/' denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an 'open' configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes.


Assuntos
Proteínas de Bactérias/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
10.
Opt Express ; 23(15): 19646-55, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367622

RESUMO

Carrier dynamics in high-Al-content AlGaN epilayers with different dislocation densities from 5 × 10(8) cm(-2) to 5 × 10(9) cm(-2) is studied by comparing the photoluminescence decay with the decay of carrier density. The carrier density decay was investigated using the light-induced transient grating technique. This comparison shows that the luminescence at the nonequilibrium carrier densities expected in operating light-emitting diodes depends on the recombination of free carriers and the localized exciton-like electron-hole pairs and localization-delocalization processes. In addition, a fraction of the nonequilibrium carriers is captured by the deep capture centers with extremely long lifetimes. These carriers have an insignificant contribution to the band-to-band radiative recombination. This capture is an important factor in decreasing the emission efficiency.

11.
Opt Express ; 22 Suppl 2: A491-7, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922258

RESUMO

The influence of carrier localization on photoluminescence efficiency droop and stimulated emission is studied in AlGaN multiple quantum wells with different strength of carrier localization. We observe that carrier delocalization at low temperatures predominantly enhances the nonradiative recombination and causes the droop, while the main effect of the delocalization at elevated temperatures is enhancement of PL efficiency due to increasing contribution of bimolecular recombination of free carriers. When the carrier thermal energy exceeds the dispersion of the potential fluctuations causing the carrier localization, the droop is caused by stimulated carrier recombination.

12.
Nucleic Acids Res ; 40(15): 7552-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570415

RESUMO

DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in prokaryotes. Here we report the crystal structure of the N-terminal DNA-binding domain (McrB-N) of the methyl-specific endonuclease McrBC from Escherichia coli. The McrB-N protein shows a novel DNA-binding fold adapted for 5mC-recognition. In the McrB-N structure in complex with methylated DNA, the 5mC base is flipped out from the DNA duplex and positioned within a binding pocket. Base flipping elegantly explains why McrBC system restricts only T4-even phages impaired in glycosylation [Luria, S.E. and Human, M.L. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol., 64, 557-569]: flipped out 5-hydroxymethylcytosine is accommodated in the binding pocket but there is no room for the glycosylated base. The mechanism for 5mC recognition employed by McrB-N is highly reminiscent of that for eukaryotic SRA domains, despite the differences in their protein folds.


Assuntos
5-Metilcitosina/química , Enzimas de Restrição do DNA/química , DNA/química , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Sítios de Ligação , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas
13.
Nucleic Acids Res ; 39(20): 8844-56, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21771860

RESUMO

Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5'-CCSGG-3' (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.


Assuntos
Clivagem do DNA , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Bacteriófago phi X 174/genética , Sequência de Bases , DNA/química , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Cinética , Transporte Proteico
14.
Science ; 382(6674): 1036-1041, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033086

RESUMO

Prokaryotic type III CRISPR-Cas antiviral systems employ cyclic oligoadenylate (cAn) signaling to activate a diverse range of auxiliary proteins that reinforce the CRISPR-Cas defense. Here we characterize a class of cAn-dependent effector proteins named CRISPR-Cas-associated messenger RNA (mRNA) interferase 1 (Cami1) consisting of a CRISPR-associated Rossmann fold sensor domain fused to winged helix-turn-helix and a RelE-family mRNA interferase domain. Upon activation by cyclic tetra-adenylate (cA4), Cami1 cleaves mRNA exposed at the ribosomal A-site thereby depleting mRNA and leading to cell growth arrest. The structures of apo-Cami1 and the ribosome-bound Cami1-cA4 complex delineate the conformational changes that lead to Cami1 activation and the mechanism of Cami1 binding to a bacterial ribosome, revealing unexpected parallels with eukaryotic ribosome-inactivating proteins.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Endorribonucleases , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , RNA Mensageiro/química , Transdução de Sinais , Endorribonucleases/química , Domínios Proteicos
15.
Opt Express ; 20(23): 25195-200, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187336

RESUMO

The photoluminescence droop effect, i.e., the decrease in emission efficiency with increasing excitation intensity, is observed and studied in GaN epilayers with different carrier lifetimes. Spontaneous and stimulated emissions have been studied in the front-face and edge emission configurations. The onset of stimulated recombination occurs simultaneously with the droop onset in the front-face configuration and might be considered as an origin of the droop effect in GaN epilayers.

16.
Nucleic Acids Res ; 38(20): 7142-54, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20571089

RESUMO

To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer-dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.


Assuntos
Clivagem do DNA , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , DNA/química , DNA/ultraestrutura , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica
17.
Nucleic Acids Res ; 37(20): 6859-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740769

RESUMO

Restriction enzymes Ecl18kI, PspGI and EcoRII-C, specific for interrupted 5-bp target sequences, flip the central base pair of these sequences into their protein pockets to facilitate sequence recognition and adjust the DNA cleavage pattern. We have used time-resolved fluorescence spectroscopy of 2-aminopurine-labelled DNA in complex with each of these enzymes in solution to explore the nucleotide flipping mechanism and to obtain a detailed picture of the molecular environment of the extrahelical bases. We also report the first study of the 7-bp cutter, PfoI, whose recognition sequence (T/CCNGGA) overlaps with that of the Ecl18kI-type enzymes, and for which the crystal structure is unknown. The time-resolved fluorescence experiments reveal that PfoI also uses base flipping as part of its DNA recognition mechanism and that the extrahelical bases are captured by PfoI in binding pockets whose structures are quite different to those of the structurally characterized enzymes Ecl18kI, PspGI and EcoRII-C. The fluorescence decay parameters of all the enzyme-DNA complexes are interpreted to provide insight into the mechanisms used by these four restriction enzymes to flip and recognize bases and the relationship between nucleotide flipping and DNA cleavage.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Nucleotídeos/metabolismo , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Fluorescência , Espectrometria de Fluorescência
18.
Nucleic Acids Res ; 36(10): e57, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18450817

RESUMO

Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein-DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein-DNA complexes.


Assuntos
Citosina/análise , DNA (Citosina-5-)-Metiltransferases/metabolismo , Enzimas de Restrição do DNA/metabolismo , DNA/química , Acetaldeído/análogos & derivados , Acetaldeído/química , Bioquímica/métodos , Citosina/metabolismo , DNA/metabolismo , DNA-Citosina Metilases/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo
19.
Nucleic Acids Res ; 36(3): 938-49, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18086711

RESUMO

The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5'-CCGC/GG-3' ('/' indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes/química , DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/classificação , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Metais/química , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
20.
Nucleic Acids Res ; 36(19): 6101-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18820295

RESUMO

Restriction endonucleases Ecl18kI and PspGI/catalytic domain of EcoRII recognize CCNGG and CCWGG sequences (W stands for A or T), respectively. The enzymes are structurally similar, interact identically with the palindromic CC:GG parts of their recognition sequences and flip the nucleotides at their centers. Specificity for the central nucleotides could be influenced by the strength/stability of the base pair to be disrupted and/or by direct interactions of the enzymes with the flipped bases. Here, we address the importance of these contributions. We demonstrate that wt Ecl18kI cleaves oligoduplexes containing canonical, mismatched and abasic sites in the central position of its target sequence CCNGG with equal efficiencies. In contrast, substitutions in the binding pocket for the extrahelical base alter the Ecl18kI preference for the target site: the W61Y mutant prefers only certain mismatched substrates, and the W61A variant cuts exclusively at abasic sites, suggesting that pocket interactions play a major role in base discrimination. PspGI and catalytic domain of EcoRII probe the stability of the central base pair and the identity of the flipped bases in the pockets. This 'double check' mechanism explains their extraordinary specificity for an A/T pair in the flipping position.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Substituição de Aminoácidos , Pareamento de Bases , Sítios de Ligação , Domínio Catalítico , DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa