Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2213650120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940334

RESUMO

Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO3/SrRuO3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO3 and magnetic moments in SrRuO3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.

2.
Nano Lett ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825790

RESUMO

The core task of neuromorphic devices is to effectively simulate the behavior of neurons and synapses. Based on the functionality of ferroelectric domains with the advantages of low power consumption and high-speed response, great progress has been made in realizing neuromimetic behaviors such as ferroelectric synaptic devices. However, the correlation between the ferroelectric domain dynamics and neuromimetic behavior remains unclear. Here, we reveal the correlation between domain/domain wall dynamics and neuromimetic behaviors from a microscopic perspective in real-time by using high temporal and spatial resolution in situ transmission electron microscopy. Furthermore, we propose utilizing ferroelectric microstructures for the simultaneous simulation of neuronal and synaptic plasticity, which is expected to improve the integration and performance of ferroelectric neuromorphic devices. We believe that this work to study neuromimetic behavior from the perspective of domain dynamics is instructive for the development of ferroelectric neuromorphic devices.

3.
Proc Natl Acad Sci U S A ; 117(32): 18954-18961, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709747

RESUMO

The ability to controllably manipulate complex topological polar configurations such as polar flux-closures via external stimuli may allow the construction of new electromechanical and nanoelectronic devices. Here, using atomically resolved in situ scanning transmission electron microscopy, we find that the polar flux-closures in PbTiO3/SrTiO3 superlattice films are mobile and can be reversibly switched to ordinary single ferroelectric c or a domains under an applied electric field or stress. Specifically, the electric field initially drives movement of a flux-closure via domain wall motion and then breaks it to form intermediate a/c striped domains, whereas mechanical stress first squeezes the core of a flux-closure toward the interface and then form a/c domains with disappearance of the core. After removal of the external stimulus, the flux-closure structure spontaneously recovers. These observations can be precisely reproduced by phase field simulations, which also reveal the evolutions of the competing energies during phase transitions. Such reversible switching between flux-closures and ordinary ferroelectric states provides a foundation for potential electromechanical and nanoelectronic applications.

4.
Phys Rev Lett ; 129(10): 107601, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112449

RESUMO

Room-temperature polar skyrmions, which have been recently discovered in oxide superlattice, have received considerable attention for their potential applications in nanoelectronics owing to their nanometer size, emergent chirality, and negative capacitance. For practical applications, their manipulation using external stimuli is a prerequisite. Herein, we study the dynamics of individual polar skyrmions at the nanoscale via in situ scanning transmission electron microscopy. By monitoring the electric-field-driven creation, annihilation, shrinkage, and expansion of topological structures in real space, we demonstrate the reversible transformation among skyrmion bubbles, elongated skyrmions, and monodomains. The underlying mechanism and interactions are discussed in conjunction with phase-field simulations. The electrical manipulation of nanoscale polar skyrmions allows the tuning of their dielectric permittivity at the atomic scale, and the detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.

5.
Phys Chem Chem Phys ; 21(38): 21381-21388, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531469

RESUMO

In multiferroics, electromagnons have been recognized as a noticeable topic due to their indispensable role in magnetoelectric, magnetodielectric, and magnetocapacitance effects. Here, the electromagnons of Bi1-xNdxFeO3 (x = 0-0.2) nanoparticles are studied via terahertz time-domain spectroscopy, and the impacts of doping concentrations on electromagnons have been discussed. We found that the electromagnons in Bi1-xNdxFeO3 nanoparticles are associated with their phase transition. The total coupling weight of electromagnons is gradually increased in polar R3c structures and then reduces in the antipolar Pbam phase, and the weight in the antipolar phase is less than that of the pure R3c phase. Interestingly, a colossal electromagnon is observed at polar-antipolar and antiferromagnetic-ferromagnetic phase boundaries. Our work offers an avenue for designing and choosing materials with better magnetodielectric and magnetocapacitance properties.

6.
Adv Mater ; 36(29): e2312072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734889

RESUMO

Non-trivial topological structures, such as vortex-antivortex (V-AV) pairs, have garnered significant attention in the field of condensed matter physics. However, the detailed topological phase transition dynamics of V-AV pairs, encompassing behaviors like self-annihilation, motion, and dissociation, have remained elusive in real space. Here, polar V-AV pairs are employed as a model system, and their transition pathways are tracked with atomic-scale resolution, facilitated by in situ (scanning) transmission electron microscopy and phase field simulations. This investigation reveals that polar vortices and antivortices can stably coexist as bound pairs at room temperature, and their polarization decreases with heating. No dissociation behavior is observed between the V-AV phase at room temperature and the paraelectric phase at high temperature. However, the application of electric fields can promote the approach of vortex and antivortex cores, ultimately leading to their annihilation near the interface. Revealing the transition process mediated by polar V-AV pairs at the atomic scale, particularly the role of polar antivortex, provides new insights into understanding the topological phases of matter and their topological phase transitions. Moreover, the detailed exploration of the dynamics of polar V-AV pairs under thermal and electrical fields lays a solid foundation for their potential applications in electronic devices.

7.
ACS Appl Mater Interfaces ; 15(48): 55984-55990, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37993976

RESUMO

The characteristic of self-recovery holds significant implications for upholding performance stability within flexible electronic devices following the release of mechanical deformation. Herein, the dynamics of self-recovery in a buckling inorganic membrane is studied via in situ scanning probe microscopy technology. The experimental results demonstrate that the ultimate deformation ratio of the buckling BaTiO3 ferroelectric membrane is up to 88%, which is much higher than that of the buckling SrTiO3 dielectric membrane (49%). Combined with piezoresponse force microscopy and phase-field simulations, we find that ferroelectric domain transformation accompanies the whole process of buckling and self-recovery of the ferroelectric membrane, i.e., the presence of the nano-c domain not only releases part of the elastic energy of the membrane but also reduces the interface mismatch of the a/c domain, which encourages the buckling ferroelectric membrane to have excellent self-recovery properties. It is conceivable that the evolution of ferroelectric domains will play a greater role in the regulation of the mechanical properties of ferroelectric membranes and flexible devices.

8.
Nat Commun ; 12(1): 4620, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330915

RESUMO

Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO3)10/(SrTiO3)10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.

9.
Nat Commun ; 12(1): 2054, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824335

RESUMO

Nontrivial topological structures offer a rich playground in condensed matters and promise alternative device configurations for post-Moore electronics. While recently a number of polar topologies have been discovered in confined ferroelectric PbTiO3 within artificially engineered PbTiO3/SrTiO3 superlattices, little attention was paid to possible topological polar structures in SrTiO3. Here we successfully create previously unrealized polar antivortices within the SrTiO3 of PbTiO3/SrTiO3 superlattices, accomplished by carefully engineering their thicknesses guided by phase-field simulation. Field- and thermal-induced Kosterlitz-Thouless-like topological phase transitions have also been demonstrated, and it was discovered that the driving force for antivortex formation is electrostatic instead of elastic. This work completes an important missing link in polar topologies, expands the reaches of topological structures, and offers insight into searching and manipulating polar textures.

10.
Nat Commun ; 11(1): 1840, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296053

RESUMO

Ferroelectric vortices formed through complex lattice-charge interactions have great potential in applications for future nanoelectronics such as memories. For practical applications, it is crucial to manipulate these topological states under external stimuli. Here, we apply mechanical loads to locally manipulate the vortices in a PbTiO3/SrTiO3 superlattice via atomically resolved in-situ scanning transmission electron microscopy. The vortices undergo a transition to the a-domain with in-plane polarization under external compressive stress and spontaneously recover after removal of the stress. We reveal the detailed transition process at the atomic scale and reproduce this numerically using phase-field simulations. These findings provide new pathways to control the exotic topological ferroelectric structures for future nanoelectronics and also valuable insights into understanding of lattice-charge interactions at nanoscale.

11.
Sci Adv ; 5(11): eaav4355, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700996

RESUMO

Recently, several captivating topological structures of electric dipole moments (e.g., vortex, flux closure) have been reported in ferroelectrics with reduced size/dimensions. However, accurate polarization distribution of these topological ferroelectric structures has never been experimentally obtained. We precisely measure the polarization distribution of an individual ferroelectric vortex in PbTiO3/SrTiO3 superlattices at the subunit cell level by using the atomically resolved integrated differential phase contrast imaging in an aberration-corrected scanning transmission electron microscope. We find, in vortices, that out-of-plane polarization is larger than in-plane polarization, and that downward polarization is larger than upward polarization. The polarization magnitude is closely related to tetragonality. Moreover, the contribution of the Pb─O bond to total polarization is highly inhomogeneous in vortices. Our precise measurement at the subunit cell scale provides a sound foundation for mechanistic understanding of the structure and properties of a ferroelectric vortex and lattice-charge coupling phenomena in these topological ferroelectric structures.

12.
ACS Nano ; 12(9): 9558-9567, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30138564

RESUMO

The ability to electrically write magnetic bits is highly desirable for future magnetic memories and spintronic devices, though fully deterministic, reversible, and nonvolatile switching of magnetic moments by electric field remains elusive despite extensive research. In this work, we develop a concept to electrically switch magnetization via polarization modulated oxygen vacancies, and we demonstrate the idea in a multiferroic epitaxial heterostructure of BaTiO3/Fe3O4 fabricated by pulsed laser deposition. The piezoelectricity and ferroelectricity of BaTiO3 have been confirmed by macro- and microscale measurements, for which Fe3O4 serves as the top electrode for switching the polarization. X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra indicate a mixture of Fe2+ and Fe3+ at O h sites and Fe3+ at T d sites in Fe3O4, while the room-temperature magnetic domains of Fe3O4 are revealed by microscopic magnetic force microscopy measurements. It is demonstrated that the magnetic domains of Fe3O4 can be switched by not only magnetic fields but also electric fields in a deterministic, reversible, and nonvolatile manner, wherein polarization reversal by electric field modulates the oxygen vacancy distribution in Fe3O4, and thus its magnetic state, making it attractive for electrically written magnetic memories.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa