Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(2): e2204520, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354178

RESUMO

The discovery of more efficient and stable catalysts for oxygen evolution reaction (OER) is vital in improving the efficiency of renewable energy generation devices. Given the large numbers of possible binary and ternary metal oxide OER catalysts, high-throughput methods are necessary to accelerate the rate of discovery. Herein, Mn-based spinel oxide, Fe10 Co40 Mn50 O, is identified for the first time using high-throughput methods demonstrating remarkable catalytic activity (overpotential of 310 mV on fluorine-doped tin oxide (FTO) substrate and 237 mV on Ni foam at 10 mA cm-2 ). Using a combination of soft X-ray absorption spectroscopy and electrochemical measurements, the high catalytic activity is attributed to 1) the formation of multiple active sites in different geometric sites, tetrahedral and octahedral sites; and 2) the formation of active oxyhydroxide phase due to the strong interaction of Co2+ and Fe3+ . Structural and surface characterizations after OER show preservation of Fe10 Co40 Mn50 O surface structure highlighting its durability against irreversible redox damage on the catalytic surface. This work demonstrates the use of a high-throughput approach for the rapid identification of a new catalyst, provides a deeper understanding of catalyst design, and addresses the urgent need for a better and stable catalyst to target greener fuel.


Assuntos
Ensaios de Triagem em Larga Escala , Óxidos , Domínio Catalítico , Oxigênio
2.
Small ; 12(33): 4531-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27389580

RESUMO

Controlling sub-10 nm ligament sizes and open-shell structure in nanoporous gold (NPG) to achieve strained lattice is critical in enhancing catalytic activity, but it remains a challenge due to poor control of reaction kinetics in conventional dealloying approach. Herein, a ligament size-controlled synthesis of open-shell NPG bowls (NPGB) through hetero-epitaxial growth of NPGB on AgCl is reported. The ligament size in NPGB is controlled from 6 to 46 nm by varying the hydroquinone to HAuCl4 ratio. The Williamson-Hall analysis demonstrates a higher lattice strain in smaller ligament size. In particular, NPGB with 6 nm (NPGB 6) ligament size possess the highest strain of 15.4 × 10(-3) , which is nearly twice of conventional 2D NPG sheets (≈8.8 × 10(-3) ). The presence of high surface energy facets in NPGBs is also envisaged. The best electrocatalytic activity toward methanol oxidation is observed in NPGB 6 (27.8 µA µg(-1) ), which is ≈9-fold and 3-fold higher than 8 nm solid Au nanoparticles, and conventional NPG sheets. The excellent catalytic activity in NPGB 6 is attributed to the open-shell structure, lattice strain, and higher electro-active surface area, allowing efficient exposure of catalytic active sites to facilitate the methanol oxidation. The results offer a potential strategy for designing next generation electrocatalysts.

3.
J Am Chem Soc ; 136(18): 6684-92, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24702183

RESUMO

Single-phase Cu2ZnSnS4 (CZTS) is an essential prerequisite toward a high-efficiency thin-film solar cell device. Herein, the selective phase formation of single-phase CZTS nanoparticles by ligand control is reported. Surface-enhanced Raman scattering (SERS) spectroscopy is demonstrated for the first time as a characterization tool for nanoparticles to differentiate the mixed compositional phase (e.g., CZTS, CTS, and ZnS), which cannot be distinguished by X-ray diffraction. Due to the superior selectivity and sensitivity of SERS, the growth mechanism of CZTS nanoparticle formation by hot injection is revealed to involve three growth steps. First, it starts with nucleation of Cu(2-x)S nanoparticles, followed by diffusion of Sn(4+) into Cu(2-x)S nanoparticles to form the Cu3SnS4 (CTS) phase and diffusion of Zn(2+) into CTS nanoparticles to form the CZTS phase. In addition, it is revealed that single-phase CZTS nanoparticles can be obtained via balancing the rate of CTS phase formation and diffusion of Zn(2+) into the CTS phase. We demonstrate that this balance can be achieved by 1 mL of thiol with Cu(OAc)2, Sn(OAc)4, and Zn(acac)2 metal salts to synthesize the CZTS phase without the presence of a detectable binary/ternary phase with SERS.

4.
Phys Chem Chem Phys ; 16(48): 26983-90, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25380327

RESUMO

An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 µL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.

5.
ACS Nano ; 17(16): 15277-15307, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530475

RESUMO

Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.

6.
Mater Horiz ; 10(5): 1806-1815, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36857680

RESUMO

Photoelectrochemical water splitting is one of the sustainable routes to renewable hydrogen production. One of the challenges to deploying photoelectrochemical (PEC) based electrolyzers is the difficulty in the effective capture of solar radiation as the illumination angle changes throughout the day. Herein, we demonstrate a method for the angle-independent capture of solar irradiation by using transparent 3 dimensional (3D) lattice structures as the photoanode in PEC water splitting. The transparent 3D lattice structures were fabricated by 3D printing a silica sol-gel followed by aging and sintering. These transparent 3D lattice structures were coated with a conductive indium tin oxide (ITO) thin film and a Mo-doped BiVO4 photoanode thin film by dip coating. The sheet resistance of the conductive lattice structures can reach as low as 340 Ohms per sq for ∼82% optical transmission. The 3D lattice structures furnished large volumetric current densities of 1.39 mA cm-3 which is about 2.4 times higher than a flat glass substrate (0.58 mA cm-3) at 1.23 V and 1.5 G illumination. Further, the 3D lattice structures showed no significant loss in performance due to a change in the angle of illumination, whereas the performance of the flat glass substrate was significantly affected. This work opens a new paradigm for more effective capture of solar radiation that will increase the solar to energy conversion efficiency.

7.
Org Biomol Chem ; 10(11): 2227-30, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22331171

RESUMO

It has been demonstrated in our studies that the intrinsic curvature of DNA can be easily interrupted by low concentrations of chloroquine and ethidium bromide. In addition, the changes of DNA curvature caused by varying the concentration of these two DNA intercalators can be readily verified through using an atomic force microscope.


Assuntos
DNA/ultraestrutura , Plasmídeos/ultraestrutura , DNA/química , Etídio/química , Microscopia de Força Atômica , Plasmídeos/química
8.
Adv Mater ; 34(47): e2207016, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134530

RESUMO

Tactile technologies that can identify human body features are valuable in clinical diagnosis and human-machine interactions. Previously, cutting-edge tactile platforms have been able to identify structured non-living objects; however, identification of human body features remains challenging mainly because of the irregular contour and heterogeneous spatial distribution of softness. Here, freestanding and scalable tactile platforms of force-softness bimodal sensor arrays are developed, enabling tactile gloves to identify body features using machine-learning methods. The bimodal sensors are engineered by adding a protrusion on a piezoresistive pressure sensor, endowing the resistance signals with combined information of pressure and the softness of samples. The simple design enables 112 bimodal sensors to be integrated into a thin, conformal, and stretchable tactile glove, allowing the tactile information to be digitalized while hand skills are performed on the human body. The tactile glove shows high accuracy (98%) in identifying four body features of a real person, and four organ models (healthy and pathological) inside an abdominal simulator, demonstrating identification of body features of the bimodal tactile platforms and showing their potential use in future healthcare and robotics.


Assuntos
Tecnologia Háptica , Robótica , Humanos , Tato , Mãos , Fenômenos Mecânicos
9.
ACS Appl Mater Interfaces ; 5(21): 11409-18, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24134617

RESUMO

An analytical platform suitable for trace detection using a small volume of analyte is pertinent to the field of toxin detection and criminology. Plasmonic nanostructures provide surface-enhanced Raman scattering (SERS) that can potentially achieve trace toxins and/or molecules detection. However, the detection of highly diluted, small volume samples remains a challenge. Here, we fabricate a superhydrophobic SERS platform by assembling Ag nanocubes that support strong surface plasmon and chemical functionalization for trace detection with sample volume of just 1 µL. Our strategy integrates the intense electromagnetic field confinement generated by Ag nanocubes with a superhydrophobic surface capable of analyte concentration to lower the molecular detection limit. Single crystalline Ag nanocubes are assembled using the Langmuir-Blodgett technique to create surface roughness. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag coating is evaporated over the Ag nanocubes to "weld" the Ag nanocubes onto the substrate followed by chemical functionalization with perfluorodecanethiol. The resulting substrate has an advancing contact angle of 169° ± 5°. Our superhydrophobic platform confines analyte molecules within a small area and prevents the random spreading of molecules. An analyte concentrating factor of 14-fold is attained, as compared to a hydrophilic surface. Consequently, the detection limit of our superhydrophobic SERS substrate reaches 10(-16) M (100 aM) for rhodamine 6G using 1 µL analyte solutions. An analytical SERS enhancement factor of 10(11) is achieved. Our protocol is a general method that provides a simple, cost-effective approach to develop a stable and uniform superhydrophobic SERS platform for trace molecular sensing.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Análise Espectral Raman/métodos , Toxinas Biológicas/isolamento & purificação , Humanos , Limite de Detecção , Prata/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa