Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248665

RESUMO

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.


Assuntos
Quitosana , Neoplasias Pulmonares , Polietilenoglicóis , Polietilenoimina , Polifosfatos , Humanos , Animais , Camundongos , Nanogéis , Antioxidantes/farmacologia , Cloreto de Amônio , Benzimidazóis , Doxorrubicina/farmacologia , Compostos de Amônio Quaternário/farmacologia
2.
Mar Drugs ; 22(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38248643

RESUMO

Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.


Assuntos
Quitosana , Micelas , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Oxirredução
3.
Mar Drugs ; 20(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35621929

RESUMO

In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-ß-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles' potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.


Assuntos
Quitosana , Nanopartículas , Antioxidantes/farmacologia , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Portadores de Fármacos , Concentração de Íons de Hidrogênio , beta-Ciclodextrinas
4.
Mar Drugs ; 20(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355011

RESUMO

We successfully prepared a series of l-arginine Schiff bases acylated chitosan derivatives, aiming to improve the antioxidant activity and antimicrobial activity of chitosan by introducing a furan ring, pyridine ring, and l-arginine structure. The accuracy of the structures of ten compounds was characterized by FT-IR and 1H NMR. In terms of DPPH radical scavenging activity, except for compound CR3PCA, the scavenging rate of other compounds was higher than chitosan, especially CRCF and CRBF had strong scavenging abilities. At the same time, in the superoxide-radical scavenging activity assay, CRCF, CRBF, CR3PCA, CR2C3PCA, and CR2B3PCA were comparable to positive control at 1.60 mg/mL. Simultaneously, CRFF, CRCF, and CRBF had a certain inhibitory effect on Botrytis cinerea. Furthermore, the inhibitory effect of CRFF, CRCF, and CR3PCA on Staphylococcus aureus was very well, close to the positive control at 1.00 mg/mL. CRCF and CR2B3PCA showed better inhibitory effects on Escherichia coli than other compounds. The MTT assay was used to determine the cytotoxicity of the chitosan derivatives, which proved their safety to fibroblast cells. In summary, the study indicated that some of these compounds have the potential for further development and utilization in the preparation of antioxidants and antimicrobial agents.


Assuntos
Anti-Infecciosos , Quitosana , Bases de Schiff/farmacologia , Bases de Schiff/química , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Escherichia coli , Arginina/farmacologia
5.
Mar Drugs ; 20(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35200616

RESUMO

N-2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), a cationic quaternary ammonium salt polymer exhibiting good solubility in water, is widely used because of its low toxicity and good biocompatibility. Herein, through ion exchange reaction, we prepared N-2-hydroxypropyltrimethyl ammonium chitosan derivatives bearing amino acid Schiff bases with good biological activities. The accuracy of the structures was verified by FT-IR and 1H NMR. The antibacterial activity, antifungal activity, and scavenging ability of DPPH radical and superoxide radical of HACC derivatives were significantly improved compared with that of HACC. In particular, HACGM (HACC-potassium 2-((2-hydroxy-3-methoxybenzylidene)amino)acetate) and HACGB (HACC-potassium 2-((5-bromo-2-hydroxybenzylidene)amino)acetate) showed good inhibitory effect on bacteria and fungi, including Staphylococcus aureus, Escherichia coli, Botrytis cinerea, and Fusarium oxysporum f. sp. cubense. The inhibition rate of HACGB on Staphylococcus aureus and Escherichia coli could reach 100% at the concentration of 0.1 mg/mL, and the inhibition rate of HACGM and HACGB on Botrytis cinerea and Fusarium oxysporum f. sp. cubense could also reach 100% at the concentration of 0.5 mg/mL. Improving antimicrobial and antioxidant activities of HACC could provide ideas and experiences for the development and utilization of chitosan derivatives.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Quitosana/análogos & derivados , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Quitosana/química , Quitosana/farmacologia , Espectroscopia de Ressonância Magnética , Compostos de Amônio Quaternário/química , Bases de Schiff/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Mar Drugs ; 20(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36286469

RESUMO

Excessive inorganic ions in vivo may lead to electrolyte disorders and induce damage to the human body. Therefore, preparation of enhanced bioactivity compounds, composed of activated organic cations and organic anions, is of great interest among researchers. In this work, glucosamine-heparin salt (GHS) was primarily synthesized with positively charged glucosamine hydrochloride (GAH) and negatively charged heparin sodium (Heps) by ion exchange method. Then, the detailed structural information of the GHS was characterized by FTIR, 1H NMR spectroscopy and ICP-MS. In addition, its anticoagulant potency and antioxidant properties were evaluated, respectively. The results demonstrated that GHS salt achieved enhanced antioxidant activities, including 98.78% of O2•- radical scavenging activity, 91.23% of •OH radical scavenging rate and 66.49% of DPPH radical scavenging capacity at 1.6 mg/mL, severally. Meanwhile, anticoagulant potency (ATTP) of GHS strengthened from 153.10 ± 17.14 to 180.03 ± 6.02 at 0.75 µmol/L. Thus, introducing cationic glucosamine residues into GHS could improve its anticoagulant activity. The findings suggest that GHS product with a small amount of inorganic ions can greatly abate the prime cost of antioxidants and anticoagulants, and has significant economic benefits and practical significance.


Assuntos
Anticoagulantes , Heparina , Humanos , Heparina/farmacologia , Heparina/química , Anticoagulantes/farmacologia , Anticoagulantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Glucosamina/farmacologia , Glucosamina/química , Cloreto de Sódio , Íons , Eletrólitos
7.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566038

RESUMO

Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most important water-soluble chitosan derivatives; its derivatives have gained growing attention due to their potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC, especially in terms of reducing power. Besides, the antioxidant activities of the prepared products were further enhanced with the increase in the test concentration and the degrees of substitution of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was 0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in food and the biomedical field.


Assuntos
Compostos de Amônio , Quitosana , Ácido Tióctico , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Compostos de Amônio Quaternário/química
8.
Mar Drugs ; 19(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564141

RESUMO

Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing.


Assuntos
Antibacterianos , Quitosana , Gentamicinas , Hidrogéis , Compostos de Amônio Quaternário , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bandagens , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/química , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Epicloroidrina/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/administração & dosagem , Gentamicinas/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Camundongos , Permeabilidade , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resistência à Tração , Água/química , Cicatrização/efeitos dos fármacos
9.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299513

RESUMO

Recent years have seen a steady increase in interest and demand for the use of humectants based on biodegradable natural polymers in many fields. The aim of this paper is to investigate the moisture absorption and retention properties of 2-hydroxypropyltrimethyl ammonium chitosan derivatives which were modified by anionic compounds via ion exchange. FTIR, 1H NMR, and 13C NMR spectroscopy were used to demonstrate the specific structures of chitosan derivatives. The degrees of substitution for objective products were calculated by the integral ratio of hydrogen atoms according to 1H NMR spectroscopy. Meanwhile, moisture absorption of specimens was assayed in a desiccator at different relative humidity (RH: 43% and 81%), and all target products exhibited enhanced moisture absorption. Furthermore, moisture retention measurement at different relative humidity (RH: 43%, 81%, and drier silica gel) was estimated, and all target products possessed obviously improved moisture retention property. Specifically, after 48 h later, the moisture retention property of HACBA at 81% RH was 372.34%, which was much higher than HA (180.04%). The present study provided a novel method to synthesize chitosan derivatives with significantly improved moisture absorption and retention properties that would serve as potential humectants in biomedical, food, medicine, and cosmetics fields.

10.
Mar Drugs ; 18(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188033

RESUMO

Chitosan is an active biopolymer, and the combination of it with other active groups can be a valuable method to improve the potential application of the resultant derivatives in food, cosmetics, packaging materials, and other industries. In this paper, a series of N,N,N-trimethyl-O-(ureidopyridinium)acetyl chitosan derivatives were synthesized. The combination of chitosan with ureidopyridinium group and quaternary ammonium group made it achieve developed water solubility and biological properties. The structures of chitosan and chitosan derivatives were confirmed by FTIR, 1H NMR spectra, and elemental analysis. The prepared chitosan derivatives were evaluated for antioxidant property by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical scavenging ability, and superoxide radical scavenging ability. The results revealed that the synthesized chitosan derivatives exhibited improved antioxidant activity compared with chitosan. The chitosan derivatives were also investigated for antifungal activity against Phomopsis asparagus as well as Botrytis cinerea, and they showed a significant inhibitory effect on the selected phytopathogen. Meanwhile, CCK-8 assay was used to test the cytotoxicity of chitosan derivatives, and the results showed that most derivatives had low toxicity. These data suggested to develop analogs of chitosan derivatives containing ureidopyridinium group and quaternary ammonium group, which will provide a new kind of promising biomaterials having decreased cytotoxicity as well as excellent antioxidant and antimicrobial activity.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Quitosana/farmacologia , Animais , Antifúngicos/química , Antioxidantes/química , Quitosana/química , Humanos , Radical Hidroxila/química , Fungos Mitospóricos/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Mar Drugs ; 16(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189609

RESUMO

Hydroxypropyltrimethyl ammonium chitosan halogenated acetates were successfully synthesized from six different haloacetic acids and hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with high substitution degree, which are hydroxypropyltrimethyl ammonium chitosan bromacetate (HACBA), hydroxypropyltrimethyl ammonium chitosan chloroacetate (HACCA), hydroxypropyltrimethyl ammonium chitosan dichloroacetate (HACDCA), hydroxypropyltrimethyl ammonium chitosan trichloroacetate (HACTCA), hydroxypropyltrimethyl ammonium chitosan difluoroacetate (HACDFA), and hydroxypropyltrimethyl ammonium chitosan trifluoroacetate (HACTFA). These chitosan derivatives were synthesized by two steps: first, the hydroxypropyltrimethyl ammonium chloride chitosan was synthesized by chitosan and 3-chloro-2-hydroxypropyltrimethyl ammonium chloride. Then, hydroxypropyltrimethyl ammonium chitosan halogenated acetates were synthesized via ion exchange. The structures of chitosan derivatives were characterized by Fourier transform infrared spectroscopy (FTIR), ¹H Nuclear magnetic resonance spectrometer (¹H NMR), 13C Nuclear magnetic resonance spectrometer (13C NMR), and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Fusarium graminearum, Botrytis cinerea, and Phomopsis asparagi were investigated by hypha measurement in vitro. The results revealed that hydroxypropyltrimethyl ammonium chitosan halogenated acetates had better antifungal activities than chitosan and HACC. In particular, the inhibitory activity decreased in the order: HACTFA > HACDFA > HACTCA > HACDCA > HACCA > HACBA > HACC > chitosan, which was consistent with the electron-withdrawing property of different halogenated acetates. This experiment provides a potential idea for the preparation of new antifungal drugs by chitosan.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Quitosana/análogos & derivados , Fungos Mitospóricos/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Compostos de Amônio Quaternário/farmacologia , Acetatos/química , Antifúngicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Quitosana/química , Quitosana/farmacologia , Fungicidas Industriais/efeitos adversos , Halogenação , Hifas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Doenças das Plantas/microbiologia , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Amônio Quaternário/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
12.
Molecules ; 23(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314307

RESUMO

In this study, a series of triple quaternized chitosan derivatives, including 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan chloride (7), 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-3-yl- methyl)-N,N-dimethyl chitosan chloride (8), and 6-O-[(2-hydroxy-3-trimethylammonium)propyl]- 2-N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan chloride (9) were successfully designed and synthesized via reacting epoxypropyl trimethylammonium chloride with the N-pyridinium double quaternized chitosan derivatives. Detailed structural characterization was carried out using FT-IR and ¹H-NMR spectroscopy, and elemental analysis. Besides, the activity of the triple quaternized chitosan derivatives against three common plant pathogenic fungi, Watermelon fusarium, Fusarium oxysporum, and Phomopsis asparagi, was investigated in vitro. The results indicated that the triple quaternized chitosan derivatives had enhanced antifungal activity when compared to double quaternized chitosan derivatives and chitosan, especially at 1.0 mg/mL, which confirmed the theory that the higher density of positive charge contributed to the antifungal activity. Moreover, 8 with an almost 99% inhibitory index showed the better antifungal activity against Watermelon fusarium. Moreover, the cytotoxicity of the products was also evaluated in vitro on 3T3-L1 cells and all the triple quaternized chitosan derivatives exhibited low cytotoxicity. These results suggested that triple quaternized chitosan derivatives may be used as good antifungal biomaterials.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Piridinas/química , Células 3T3-L1 , Animais , Antifúngicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/síntese química , Fungos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Molecules ; 23(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495379

RESUMO

Chitosan (CS) is an abundant and renewable polysaccharide that is reported to exhibit a great variety of beneficial properties. However, the poor solubility of chitosan in water limits its applications. In this paper, we successfully synthesized single N-quaternized (QCS) and double N-diquaternized (DQCS) chitosan derivatives, and the resulting quaternized materials were water-soluble. The degree of quaternization (DQ) of QCS and DQCS was 0.8 and 1.3, respectively. These derivatives were characterized by FTIR, ¹H NMR, 13C NMR, TGA, and SEM. Moreover, the antioxidant activity of the chitosan was evaluated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical, and superoxide-radical) and ferric reducing power. Our results suggested that the antioxidant abilities were in the order of DQCS > QCS > CS, which was consistent with the number of quaternized groups. These data demonstrate that the number of quaternized groups of chitosan derivatives contributes to their antioxidant activity. Therefore, DQCS, with a higher number of quaternized groups and higher positive charge density, is endowed with high antioxidant activity, and can be used as a candidate material in food and pharmaceutical industries.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Antioxidantes/síntese química , Técnicas de Química Sintética , Quitosana/síntese química , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
14.
Bioorg Chem ; 74: 66-71, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28755563

RESUMO

In order to study the influence of amino group on antioxidant activity of oligosaccharides, an amino disaccharide, 6,6'-diamino-6,6'-dideoxytrehalose (DAMDT) was successfully prepared in this paper, and its antioxidant activities against DPPH, superoxide, hydrogen peroxide, and hydroxyl radicals, and reducing power were evaluated, respectively. The results indicated that DAMDT had better antioxidant activity than trehalose at any tested concentration. The influence of amino group on antioxidant activity of disaccharides is positive based on the results in this paper, and amination should be an effective method to improve the bioactivity of saccharides.


Assuntos
Antioxidantes/farmacologia , Trealose/análogos & derivados , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Peróxido de Hidrogênio/antagonistas & inibidores , Radical Hidroxila/antagonistas & inibidores , Picratos/antagonistas & inibidores , Superóxidos/antagonistas & inibidores , Trealose/síntese química , Trealose/química , Trealose/farmacologia
15.
Molecules ; 22(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106807

RESUMO

Chemical modification of chitosan is increasingly studied for its potential of providing new applications of chitosan. Here, a group of novel chitosan quaternary ammonium derivatives containing pyridine or amino-pyridine were designed and successfully synthesized through chemical modification of chitosan. Pyridine and amino-pyridine were used as functional groups to improve the antifungal activity of chitosan derivatives. The chitosan derivatives' antioxidant activity against hydroxyl-radical and 1,1-Diphenyl-2-picrylhydrazyl (DPPH)-radical was tested in vitro. The results showed that chitosan derivatives had better water solubility and stronger antioxidant activity compared with chitosan in all assays. Especially, compounds 3C and 3E (with 3-amino pyridine and 2,3-diamino pyridine as substitute respectively) exhibited stronger hydroxyl-radical and DPPH-radical scavenging ability than other synthesized compounds. These data demonstrated that the synergistic effect of the amino group and pyridine would improve the antioxidant activity of chitosan derivatives, and the position of the amino group on pyridine could influence the antioxidant property of chitosan derivatives.


Assuntos
Aminopiridinas/síntese química , Antifúngicos/síntese química , Antioxidantes/síntese química , Quitosana/síntese química , Compostos de Amônio Quaternário/síntese química , Aminopiridinas/química , Antifúngicos/química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Quitosana/análogos & derivados , Desenho de Fármacos , Radical Hidroxila/antagonistas & inibidores , Oxirredução , Picratos/antagonistas & inibidores , Compostos de Amônio Quaternário/química , Solubilidade , Relação Estrutura-Atividade
16.
Molecules ; 22(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858241

RESUMO

Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, ¹H-NMR, 31P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi, Watermelon fusarium, Colletotrichum lagenarium, and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.


Assuntos
Antifúngicos/síntese química , Quitosana/análogos & derivados , Quitosana/síntese química , Compostos Organofosforados/síntese química , Compostos de Amônio Quaternário/síntese química , Antifúngicos/farmacologia , Quitosana/farmacologia , Estabilidade de Medicamentos , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Compostos Organofosforados/farmacologia , Compostos de Amônio Quaternário/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Molecules ; 22(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327537

RESUMO

With the specialty of improving the water solubility of chitosan, quaternary ammonium salts have broadened the application of this polysaccharide in food, medicine and pesticides. To identify the effect of quaternary ammonium salts' quantity, single quaternized chitosan N-phenmethyl-N,N-dimethyl chitosan (PDCS), double quaternized chitosan N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan (MP2MDCS), N-(1-pyridylmethyl-3-ylmethyl)-N,N-dimethyl chitosan (MP3MDCS), and N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan (MP4MDCS) were designed and synthesized successfully through chemical modification of chitosan. Besides, three kinds of antioxidant activities, including hydroxyl radicals, superoxide radicals, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals were tested in vitro. As shown in this paper, the scavenging ability was ranking in order of MP3MDC > MP4MDCS > MP2MDCS > PDCS > chitosan at 1.6 mg/mL in all assays. All double quaternary ammonium salts were better than chitosan or the single quaternary ammonium salt. In addition, MP3MDCS could scavenge hydroxyl radicals totally at 1.6 mg/mL. MP2MDCS and MP4MDCS with more than 90% scavenging indices both had great scavenging ability on hydroxyl radicals or DPPH radicals. Furthermore, these data demonstrated that the increasing number of the positive charge would improve the antioxidant property of chitosan derivatives, and the N-pyridinium position would influence the scavenging radical ability.


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Quitosana/síntese química , Quitosana/farmacologia , Antioxidantes/química , Quitosana/análogos & derivados , Quitosana/química , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Int J Biol Macromol ; 257(Pt 1): 128590, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056756

RESUMO

pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method. The chemical structure of chitosan derivatives was verified by 1H NMR and FT-IR techniques. Compared to hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-based nanogels, BIMIXHAC-based nanogels exhibit better drug encapsulation efficiency and loading capacity (BIMIXHAC-D-HA 91.76 %, and 32.23 %), with pH-responsive release profiles and accelerated release in vitro. The series of nanogels formed by crosslinking with three different polyanionic crosslinkers have different particle size potentials and antioxidant properties. BIMIXHAC-HA, BIMIXHAC-SA and BIMIXHAC-CMC demonstrate favorable antioxidant capability. In addition, cytotoxicity tests showed that BIMIXHAC-based nanogels have high biocompatibility. BIMIXHAC-based nanogels exhibit preferable anticancer effects on MCF-7 and A549 cells. Furthermore, the BIMIXHAC-D-HA nanogel was 2.62 times less toxic than DOX to L929 cells. These results suggest that BIMIXHAC-based nanogels can serve as pH-responsive nanoplatforms for the delivery of anticancer drugs.


Assuntos
Antioxidantes , Quitosana , Nanogéis , Antioxidantes/farmacologia , Quitosana/química , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Doxorrubicina/farmacologia , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Sódio , Portadores de Fármacos/química
19.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582463

RESUMO

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Assuntos
Antioxidantes , Quitosana , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Bases de Schiff , Succinato Desidrogenase , Quitosana/química , Quitosana/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Fusarium/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Técnicas de Química Sintética
20.
Int J Biol Macromol ; 268(Pt 2): 131736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653433

RESUMO

A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity. The GSH-induced release behavior, cellular uptake ability, ROS generation and GSH consumption capacity and in vitro antitumor activity of Dox/LCNE-LA micelle were systematically evaluated. Consequently, Dox/LCNE-LA cationic micelle with positively charged could efficiently enter into cancer cell and redox-sensitive release Dox via disulfide-thiol exchange reaction, which usually expend abundant GSH and disrupt redox homeostasis. Studies further confirmed that Dox/LCNE-LA micelle could increase ROS and reduced GSH content which might cause oxidative damage to tumor cell. Antitumor activity indicated that Dox/LCNE-LA micelle achieved an excellent cancer-killing effect, which might be attributed to combination treatment of Dox and ROS induce oxidative damage. Overall, this research was expected to provide a platform for antitumor treatment by triggering Dox release and promoting ROS generation.


Assuntos
Antineoplásicos , Quitosana , Doxorrubicina , Glutationa , Micelas , Peso Molecular , Estresse Oxidativo , Quitosana/química , Quitosana/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Glutationa/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Cátions/química , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa