RESUMO
The natural resistance-associated macrophage protein (NRAMP) family plays crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. To understand the roles of AhNRAMP genes in iron/cadmium interactions in peanut, genome-wide identification and bioinformatics analysis was performed. A total of 15 AhNRAMP genes were identified from the peanut genome, including seven gene pairs derived from whole-genome duplication and a segmental duplicated gene. AhNRAMP proteins were divided into two distinct subfamilies. Subfamily I contains eight acid proteins with a specific conserved motif 7, which were predicted to localize in the vacuole membrane, while subfamily II includes seven basic proteins sharing specific conserved motif 10, which were localized to the plasma membrane. Subfamily I genes contained four exons, while subfamily II had 13 exons. AhNRAMP proteins are perfectly modeled on the 5m94.1.A template, suggesting a role in metal transport. Most AhNRAMP genes are preferentially expressed in roots, stamens, or developing seeds. In roots, the expression of most AhNRAMPs is induced by iron deficiency and positively correlated with cadmium accumulation, indicating crucial roles in iron/cadmium interactions. The findings provide essential information to understand the functions of AhNRAMPs in the iron/cadmium interactions in peanuts.
Assuntos
Cádmio , Ferro , Ferro/metabolismo , Cádmio/metabolismo , Arachis/genética , Arachis/metabolismo , Metais/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
The oligopeptide transporter (OPT) family is a group of proton-coupled symporters that play diverse roles, including metal homeostasis. However, little is known about this family of peanuts. To reveal the potential roles of AhOPT genes in Fe/Cd interactions, peanut AhOPT genes were genome-widely identified, and the relationships between gene expression and Cd accumulation were detected in two contrasting peanut cultivars (Fenghua 1 and Silihong) under Fe-sufficient or Fe-deficient conditions. A total of 40 AhOPT genes were identified in peanuts, which were divided into two subfamilies (PT and YS). Most AhOPT genes underwent gene duplication events predominated by whole-genome duplication. Clustered members generally have similar protein structures. However, gene structural divergences occurred in most of the duplicated genes. Transcription analysis revealed that AhOPT3.2/3.4 and AhYSL3.1/3.2 might be responsible for Fe deficiency tolerance, while AhOPT3.1/3.4, AhOPT7.1/7.2, and AhYSL1.1 be involved in Fe/Cd interactions. These genes might be regulated by transcription factors, including ATHB-12, ATHB-6, DIVARICATA, MYB30, NAC02, DOF3.4, IDD7, and LUX. Reduced expressions of AhYSL3.1/3.2 and higher expressions of AhOPT3.4 might contribute to higher Fe-deficiency tolerance in Silihong. Higher expression of AhOPT7.3 and AhOPT6.1 might be responsible for low Cd accumulation in Fenghua 1. Our results confirmed that AhOPT3/6/7 and AhYSL1/3 might be involved in the transport of Fe and/or Cd in peanuts and provided new clues to understanding potential mechanisms of Fe/Cd interactions.