RESUMO
Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1, which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPß binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis.
Assuntos
Adipócitos/citologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Histonas/genética , PPAR gama/metabolismo , Células 3T3 , Adipócitos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Estrutura Terciária de ProteínaRESUMO
Down syndrome critical region (DSCR)-1 functions as a feedback modulator for calcineurin-nuclear factor for activated T cell (NFAT) signals, which are crucial for cell proliferation and inflammation. Stable expression of DSCR-1 inhibits pathological angiogenesis and septic inflammation. DSCR-1 also plays a critical role in vascular wall remodeling associated with aneurysm development that occurs primarily in smooth muscle cells. Besides, Dscr-1 deficiency promotes the M1-to M2-like phenotypic switch in macrophages, which correlates to the reduction of denatured cholesterol uptakes. However, the distinct roles of DSCR-1 in cholesterol and lipid metabolism are not well understood. Here, we show that loss of apolipoprotein (Apo) E in mice with chronic hypercholesterolemia induced Dscr-1 expression in the liver and aortic atheroma. In Dscr-1-null mice fed a high-fat diet, oxidative- and endoplasmic reticulum (ER) stress was induced, and sterol regulatory element-binding protein (SREBP) 2 production in hepatocytes was stimulated. This exaggerated ApoE-/--mediated nonalcoholic fatty liver disease (NAFLD) and subsequent hypercholesterolemia. Genome-wide screening revealed that loss of both ApoE and Dscr-1 resulted in the induction of immune- and leukocyte activation-related genes in the liver compared with ApoE deficiency alone. However, expressions of inflammation-activated markers and levels of monocyte adhesion were suspended upon induction of the Dscr-1 null background in the aortic endothelium. Collectively, our study shows that the combined loss of Dscr-1 and ApoE causes metabolic dysfunction in the liver but reduces atherosclerotic plaques, thereby leading to a dramatic increase in serum cholesterol and the formation of sporadic vasculopathy.
Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Ligação ao Cálcio/deficiência , Colesterol/metabolismo , Deleção de Genes , Hipercolesterolemia/genética , Proteínas Musculares/deficiência , Animais , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hipercolesterolemia/metabolismo , Camundongos , Proteínas Musculares/genética , FenótipoRESUMO
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Assuntos
Imunoconjugados , Humanos , Animais , Camundongos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , AnticorposRESUMO
The lysine methyltransferase SETDB1, an enzyme responsible for methylation of histone H3 at lysine 9, plays a key role in H3K9 tri-methylation-dependent silencing of endogenous retroviruses and developmental genes. Recent studies have shown that ubiquitination of human SETDB1 complements its catalytic activity and the silencing of endogenous retroviruses in human embryonic stem cells. However, it is not known whether SETDB1 ubiquitination is essential for its other major role in epigenetic silencing of developmental gene programs. We previously showed that SETDB1 contributes to the formation of H3K4/H3K9me3 bivalent chromatin domains that keep adipogenic Cebpa and Pparg genes in a poised state for activation and restricts the differentiation potential of pre-adipocytes. Here, we show that ubiquitin-resistant K885A mutant of SETDB1 represses adipogenic genes and inhibits pre-adipocyte differentiation similar to wild-type SETDB1. We show this was due to a compensation mechanism for H3K9me3 chromatin modifications on the Cebpa locus by other H3K9 methyltransferases Suv39H1 and Suv39H2. In contrast, the K885A mutant did not repress other SETDB1 target genes such as Tril and Gas6 suggesting SETDB1 represses its target genes by two mechanisms; one that requires its ubiquitination and another that still requires SETDB1 but not its enzyme activity.
Assuntos
Adipogenia , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Ubiquitinação , Células 3T3-L1 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células HEK293 , Código das Histonas , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação de Sentido IncorretoRESUMO
BACKGROUND: We previously found two distinct passenger dendritic cell (DC) subsets in the rat liver that played a central role in the liver transplant rejection. In addition, a tolerance-inducing protocol, donor-specific transfusion (DST), triggered systemic polytopical production of depleting alloantibodies to donor class I MHC (MHCI) antigen (DST-antibodies). METHODS: We examined the role of DST-antibodies in the trafficking of graft DC subsets and the alloresponses in a rat model. We also examined an anti-donor class II MHC (MHCII) antibody that recognizes donor DCs more selectively. RESULTS: Preoperative transfer of DST-antibodies or DST pretreatment eliminated all passenger leukocytes, including both DC subsets and depleted the sessile DCs in the graft to ~20% of control. The CD172a+CD11b/c+ immunogenic subset was almost abolished. The intrahost direct or semi-direct allorecognition pathway was successfully blocked, leading to a significant suppression of the CD8+ T-cell response in the recipient lymphoid organs and the graft with delayed graft rejection. Anti-donor MHCII antibody had similar effects without temporary graft damage. Although DST pretreatment had a priming effect on the proliferative response of recipient regulatory T cells, DST-primed sera and the anti-donor MHCII antibody did not. CONCLUSION: DST-antibodies and anti-donor MHCII antibodies could suppress the CD8+ T-cell-mediated liver transplant rejection by depleting donor immunogenic DCs, blocking the direct or semi-direct pathways of allorecognition. Donor MHCII-specific antibodies may be applicable as a selective suppressant of anti-donor immunity for clinical liver transplantation without the cellular damage of donor MHCII- graft cells and recipient cells.
Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Isoanticorpos/imunologia , Animais , Animais Geneticamente Modificados/imunologia , Formação de Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígeno CD11b/imunologia , Linfócitos T CD8-Positivos , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante de Fígado/métodos , Ratos , Ratos Endogâmicos Lew , Linfócitos T Reguladores/imunologia , Doadores de Tecidos , Transplante Homólogo/métodosRESUMO
PURPOSE: Urinary retention (UR) is a frequent complication following laparoscopic colorectal surgery. The aim of the present study was to investigate the risk factors for acute UR after laparoscopic surgery for colorectal cancer in patients receiving epidural analgesia. METHODS: A retrospective study was conducted of 201 patients who underwent laparoscopic surgery for colorectal cancer among those receiving epidural analgesia. Univariate and multivariate analyses were performed to determine the clinicopathological factors associated with acute UR. Acute UR was defined as Clavien-Dindo classification grade ≥ 1. RESULTS: The overall incidence of acute UR was 17.9% (36/201). The univariate analysis showed that male gender (P = 0.043), a history of chronic heart failure (P = 0.009), an increased level of serum creatinine (P = 0.028), an increased intraoperative fluid volume (P = 0.016), and an early postoperative date of urinary catheter removal (P = 0.003) were both associated with acute UR. The multivariate logistic regression analysis revealed an increased intraoperative fluid volume (100-ml increments; odds ratio [OR]: 1.085, 95% confidence interval [CI]: 1.034-1.138, P < 0.001), history of chronic heart failure (OR: 6.843, 95% CI: 1.893-24.739, P = 0.003), and postoperative date of urinary catheter removal (OR: 0.550, 95% CI: 0.343-0.880, P = 0.013) were independent risk factors for acute UR. CONCLUSION: Our findings suggest that an increased intraoperative fluid volume, history of chronic heart failure, and early removal of the urinary catheter are risk factors of UR after laparoscopic surgery for colorectal cancer in patients receiving epidural analgesia. An assessment using these factors might be helpful for predicting acute UR.
Assuntos
Analgesia Epidural , Neoplasias Colorretais , Laparoscopia , Retenção Urinária , Idoso , Analgesia Epidural/efeitos adversos , Neoplasias Colorretais/cirurgia , Humanos , Laparoscopia/efeitos adversos , Masculino , Complicações Pós-Operatórias , Estudos Retrospectivos , Fatores de Risco , Retenção Urinária/epidemiologia , Retenção Urinária/etiologiaRESUMO
PURPOSE: Urinary dysfunction (UD) is a frequent complication following rectal surgery. The aim of the present study was to investigate the risk factors for acute UD after laparoscopic low anterior resection (LALAR) for rectal cancer in patients receiving epidural analgesia. METHODS: A retrospective study was conducted on 131 patients who underwent LALAR among those receiving epidural analgesia in a single institution between October 2008 and December 2019. Univariate and multivariate analyses were performed to determine the clinicopathological factors associated with acute UD. RESULTS: The overall incidence of acute UD was 16.0% (21/131). Univariate analysis showed that older age (P = 0.016) and earlier urinary catheter removal (P = 0.036) were associated with acute UD. Multivariate logistic regression analysis revealed that older age (10-year increments; odds ratio (OR) 2.046, 95% confidence interval (CI) 1.171-3.543, P = 0.011), urinary catheter removal before epidural analgesia discontinuation (OR 6.393, 95% CI 1.540-26.534, P = 0.011), and a large tumor circumference rate (10% increments; OR 1.263, 95% CI 1.043-1.530, P = 0.017) were independent risk factors for acute UD. CONCLUSION: Our findings suggest that older age, early removal of urinal catheter before epidural analgesia discontinuation, and large tumor circumference rate are risk factors of acute UD after LALAR for rectal cancer in patients receiving epidural analgesia.
Assuntos
Analgesia Epidural , Laparoscopia , Neoplasias Retais , Idoso , Analgesia Epidural/efeitos adversos , Humanos , Laparoscopia/efeitos adversos , Neoplasias Retais/cirurgia , Estudos Retrospectivos , Medição de RiscoRESUMO
PURPOSE: Early post-operative delirium (EPOD) is a frequent complication following colorectal surgery. The present study investigated the risk factors for EPOD after laparoscopic colorectal surgery in elderly patients. METHODS: A retrospective study was conducted among 208 patients ≥70 years old who underwent laparoscopic colorectal surgery. Univariate and multivariate analyses were performed to determine the clinicopathological factors associated with the EPOD. RESULTS: The overall incidence of EPOD was 10.1% (21/208). The univariate analysis showed that an older age (≥80 years old; P=0.002), sleeping pill medication before surgery (P=0.037), a history of dementia (P=0.030) and cerebrovascular disease (P=0.017), elevated levels of D-dimer (P=0.016), maximum intraoperative temperature ≥37 °C (P=0.036), and non-continuous usage of droperidol with analgesia (P=0.005) were associated with EPOD. The multivariate logistic regression analysis revealed an older age (≥80 years old; odds ratio [OR]: 6.26, 95% confidence interval [CI]: 1.94-20.15, P=0.002), sleeping pill medication before surgery (OR: 5.39, 95% CI: 1.36-21.28, P=0.016), history of cerebrovascular disease (OR: 3.91, 95% CI: 1.12-13.66, P=0.033), and maximum intraoperative temperature ≥37 °C (OR: 5.10, 95% CI: 1.53-16.92, P=0.008) to be independent risk factors. When the patients were divided into groups according to the number of positive risk factors, the prevalence rate was 6.5%, 16.0%, and 63.6% for patients with 1, 2, and 3 positive risk factors, respectively. CONCLUSION: Our findings suggest that an older age, sleeping pill medication before surgery, history of cerebrovascular disease, and maximum intraoperative temperature ≥37 °C are independent risk factors of EPOD after laparoscopic colorectal surgery in elderly patients.
Assuntos
Neoplasias Colorretais , Delírio , Laparoscopia , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/cirurgia , Humanos , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Medição de Risco , Fatores de RiscoRESUMO
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.
Assuntos
Regulação da Expressão Gênica , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Humanos , Hipolipemiantes/farmacologia , Ligantes , RatosRESUMO
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily and include three subtypes (PPARα, PPARδ, and PPARγ). They regulate gene expression in a ligand-dependent manner. PPARα plays an important role in lipid metabolism. PPARγ is involved in glucose metabolism and is a potential therapeutic target in Type 2 diabetes. PPARδ ligands are candidates for the treatment of metabolic disorders. Thus, the detection of PPAR ligands may facilitate the treatment of various diseases. In this study, to identify PPAR ligands, we engineered reporter cell lines that can be used to quantify PPARγ and PPARδ activity. We evaluated several known ligands using these reporter cell lines and confirmed that they are useful for PPAR ligand detection. Furthermore, we evaluated extracts of approximately 200 natural resources and found various extracts that enhance reporter gene activity. Finally, we identified a main alkaloid of the Evodia fruit, evodiamine, as a PPARγ activator using this screening tool. These results suggest that the established reporter cell lines may serve as a useful cell-based screening tool for finding PPAR ligands to ameliorate metabolic syndromes.
Assuntos
Síndrome Metabólica/prevenção & controle , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Linhagem Celular , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Síndrome Metabólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Extratos Vegetais/farmacologiaRESUMO
In advanced cancer patients, malignant cells invade and disseminate within normal cells and develop resistance to therapy with additional genetic mutations, which makes radical cure very difficult. Precision medicine against advanced cancer is hampered by the lack of systems aimed at multiple target molecules within multiple loci. Here, we report the development of a versatile diagnostic and therapeutic system for advanced cancer, named the Cupid and Psyche system. Based on the strong non-covalent interaction of streptavidin and biotin, a low immunogenic mutated streptavidin, Cupid, and a modified artificial biotin, Psyche, have been designed. Cupid can be fused with various single-chain variable fragment antibodies and forms tetramer to recognize cancer cells precisely. Psyche can be conjugated to a wide range of diagnostic and therapeutic agents against malignant cells. The Cupid and Psyche system can be used in pre-targeting therapy as well as photo-immunotherapy effectively in animal models supporting the concept of a system for precision medicine for multiple targets within multiple loci.
Assuntos
Antineoplásicos/química , Biotina/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Estreptavidina/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Medicina de Precisão , Anticorpos de Cadeia Única/químicaRESUMO
Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor α modulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.
Assuntos
Benzoxazóis/farmacologia , Butiratos/farmacologia , PPAR alfa/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , PPAR alfa/agonistas , PPAR alfa/químicaRESUMO
Epigenetic abnormalities have been suggested to mediate metabolic memory observed in diabetic complications. We have shown that epigenetic alterations may induce persistent phenotypic changes in the proximal tubules of the diabetic kidneys. In this study, we show that pregnane X receptor (PXR), a xenobiotic nuclear receptor, is epigenetically altered and upregulated and may have a possible function in the diabetic kidney. PXR has been shown to play a critical role in metabolic changes in obesity and diabetes; however, its distribution and function in the kidney are unknown. In the normal kidney, Pxr was selectively expressed in the proximal tubular cells with demethylation in the promoter DNA. In db/db mice, significant increases in Pxr mRNA, further demethylation of DNA, and stimulatory histone marks in the promoter were observed. Epigenetic changes are likely to play a causative role in PXR induction, since a DNA methyltransferase inhibitor increased PXR mRNA in cultured human proximal tubular cells. Administration of a PXR agonist increased mRNA levels of solute carrier organic anion transporter family member 2B1 ( Slco2b1), a xenobiotic transporter; response gene to complement 32 ( Rgc32), a molecule known to exert fibrotic effects in the kidney; and phosphoenolpyruvate carboxykinase 1 ( Pck1), a gluconeogenic enzyme in the kidney. The expressions of these genes were inhibited by PXR small interfering RNA in cultured proximal tubular cells. Increased mRNA levels of Slco2b1, Rgc32, and Pck1 were also observed in the kidney of db/db mice. These data indicate that PXR is upregulated in the diabetic kidney with aberrant epigenetic modifications and may modulate the course of diabetic kidney disease through the activation of these genes.
Assuntos
Metilação de DNA , Nefropatias Diabéticas/genética , Metabolismo Energético/genética , Epigênese Genética , Túbulos Renais Proximais/metabolismo , Receptor de Pregnano X/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Receptor de Pregnano X/metabolismo , Regiões Promotoras GenéticasRESUMO
Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes.
Assuntos
Fosfatidato Fosfatase/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Células Hep G2 , Humanos , UbiquitinaçãoRESUMO
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.
Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Técnicas Imunoenzimáticas , Imunoprecipitação , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Complexo Repressor Polycomb 1/genética , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , UbiquitinaçãoRESUMO
Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Lepr(db/db) mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity.
Assuntos
Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Resistência à Insulina , Acetilação , Tecido Adiposo/metabolismo , Animais , Proteínas Correpressoras/genética , Proteína Forkhead Box O1 , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Sirtuína 1/metabolismoRESUMO
SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol.
Assuntos
Proteínas Metiltransferases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Histona-Lisina N-Metiltransferase , Humanos , Carioferinas/antagonistas & inibidores , Leupeptinas/farmacologia , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Metiltransferases/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Frações Subcelulares/metabolismo , Proteína Exportina 1RESUMO
OBJECTIVE: To evaluate the image quality and radiation dose reduction in pelvic computed tomography (CT) achieved with an adaptive iterative dose reduction 3-dimensional (AIDR 3D) algorithm using a phantom model. METHODS: Two phantoms were scanned using a 320-detector row CT scanner with 8 tube current levels, and the images were reconstructed with a standard filtered back projection (FBP) algorithm and with an AIDR 3D algorithm. RESULTS: Compared with FBP, AIDR 3D reduced image noise and improved contrast-to-noise ratios. The diagnostic performance for detection of low-contrast targets of AIDR 3D images obtained with 100 mA at 120 kVp was almost as good as that of the FBP images obtained with 200 mA. CONCLUSIONS: The AIDR 3D algorithm substantially reduced image noise and improved the image quality of pelvic CT images compared with those obtained with the FBP algorithm and can thus be considered a promising technique for low-dose pelvic CT examinations.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Doses de Radiação , Razão Sinal-RuídoRESUMO
Mitochondria play a vital role in non-shivering thermogenesis in both brown and subcutaneous white adipose tissues (BAT and scWAT, respectively). However, specific regulatory mechanisms driving mitochondrial function in these tissues have been unclear. Here we demonstrate that prolonged activation of ß-adrenergic signaling induces epigenetic modifications in scWAT, specifically targeting the enhancers for the mitochondria master regulator genes Pgc1a/b. This is mediated at least partially through JMJD1A, a histone demethylase that in response to ß-adrenergic signals, facilitates H3K9 demethylation of the Pgc1a/b enhancers, promoting mitochondrial biogenesis and the formation of beige adipocytes. Disruption of demethylation activity of JMJD1A in mice impairs activation of Pgc1a/b driven mitochondrial biogenesis and limits scWAT beiging, contributing to reduced energy expenditure, obesity, insulin resistance, and metabolic disorders. Notably, JMJD1A demethylase activity is not required for Pgc1a/b dependent thermogenic capacity of BAT especially during acute cold stress, emphasizing the importance of scWAT thermogenesis in overall energy metabolism.
RESUMO
UNLABELLED: The aim of this study was to investigate the trafficking patterns, radiation sensitivities, and functions of conventional dendritic cell (DC) subsets in the rat liver in an allotransplantation setting. We examined DCs in the liver, hepatic lymph, and graft tissues and recipient secondary lymphoid organs after liver transplantation from rats treated or untreated by sublethal irradiation. We identified two distinct immunogenic DC subsets. One was a previously reported population that underwent blood-borne migration to the recipient's secondary lymphoid organs, inducing systemic CD8(+) T-cell responses; these DCs are a radiosensitive class II major histocompatibility complex (MHCII)(+) CD103(+) CD172a(+) CD11b(-) CD86(+) subset. Another was a relatively radioresistant MHCII(+) CD103(+) CD172a(+) CD11b(+) CD86(+) subset that steadily appeared in the hepatic lymph. After transplantation, the second subset migrated to the parathymic lymph nodes (LNs), regional peritoneal cavity nodes, or persisted in the graft. Irradiation completely eliminated the migration and immunogenicity of the first subset, but only partly suppressed the migration of the second subset and the CD8(+) T-cell response in the parathymic LNs. The grafts were acutely rejected, and intragraft CD8(+) T-cell and FoxP3(+) regulatory T-cell responses were unchanged. The radioresistant second subset up-regulated CD25 and had high allostimulating activity in the mixed leukocyte reaction, suggesting that this subset induced CD8(+) T-cell responses in the parathymic LNs and in the graft by the direct allorecognition pathway, leading to the rejection. CONCLUSION: Conventional rat liver DCs contain at least two distinct immunogenic passenger subsets: a radiosensitive blood-borne migrant and a relatively radioresistant lymph-borne migrant. LNs draining the peritoneal cavity should be recognized as a major site of the intrahost T-cell response by the lymph-borne migrant. This study provides key insights into liver graft rejection and highlights the clinical implications of immunogenic DC subsets.