Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(2): 2398-2410, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121930

RESUMO

We present a numerical study of optical torque between two twisted metal nanorods due to the angular momentum of the electromagnetic field emerging from their plasmonic coupling. Our results indicate that the interaction optical torque on the nanorods can be strongly enhanced by their plasmon coupling, which highly depends on not only the gap size but also the twisted angle between the nanorods. The behaviors of the optical torque are different between two plasmon coupling modes: hybridized bonding and anti-bonding modes with different resonances. The rotations of the twisted nanorods with the bonding and anti-bonding mode excitations lead to mutually parallel and perpendicular alignments, respectively. At an incident intensity of 10 mW/µm2, the rotational potential depths are more than 30 times as large as the Brownian motion energy, enabling the optical alignments with angle fluctuations less than ∼±10°. Thus, this optical alignment of the nanoparticles with the plasmon coupling allows dynamic control of the plasmonic characteristics and functions.

2.
Chem Rec ; 19(7): 1210-1219, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30256528

RESUMO

Plasmonics in the UV region has been widely focused because of the higher energy and the abundant electronic resonances compared to the conventional visible plasmonics. Recently, we have investigated the surface plasmon resonance (SPR) properties of the Al film, aiming for the application as refractive index sensors. Utilizing the UV lights, we expect three advantages: high sensitivity, material selectivity, and surface selectivity. By using an original attenuated total reflectance spectroscopic instrument, Al-SPR angle and wavelength were investigated with changing environments on the Al film. Al film thickness and materials of prisms on which Al was evaporated were also important factors for the SPR properties. By optimizing the conditions, the Al film worked as a sensor both in air and in liquids. In addition, our established system expands the plasmonics into an even higher energy region than 200 nm, while the UV-plasmonics have been studied in the wavelength region longer than 200 nm.

3.
Nano Lett ; 17(5): 3165-3170, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28388075

RESUMO

Achieving high directionality of scattered light in combination with high flexibility of the direction using plasmonic nanoparticles is desirable for future optical nanocircuits and on-chip optical links. The plasmonic characteristics of nanoparticles strongly depend on their geometry. Here, we studied directional light scattering by a single-element triangular plasmonic nanoparticle. Our experimental and simulation results demonstrated that the triangular nanoparticle spatially sorted the incoming photons into three different scattering directions according to their polarization direction, including circular polarization, despite its compact overall volume of ∼λ3/300. The broken mirror symmetry and rotational symmetry of the triangular nanoparticle enabled such passive tridirectional polarization routing through the constructive and destructive interference of different plasmon modes. Our findings should markedly broaden the versatility of triangular plasmonic nanodevices, extending their possible practical applications in photon couplers and sorters and chemo-/biosensors.

4.
Opt Express ; 24(19): 21886-96, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661924

RESUMO

The surface plasmon resonance (SPR) of Al thin films was investigated by varying the refractive index of the environment near the films in the far-ultraviolet (FUV, 120-200 nm) and deep-ultraviolet (DUV, 200-300 nm) regions. An original FUV-DUV spectrometer that adopts an attenuated total reflectance (ATR) system was used. The measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. The resultant spectra enabled the dispersion relationship of Al-SPR in the FUV and DUV regions to be obtained. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared to those in air. These shifts correspond well with the results of simulations performed using Fresnel equations.

5.
Nano Lett ; 15(10): 7086-90, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26372183

RESUMO

We demonstrated a new plasmonic nanodevice that spatially sorts photons according to their colors on the nanoscale while maintaining their nanoconcentration. The properties of this nanoscale color sorting based on constructive and destructive interferences between different multipolar plasmon modes are controlled by tuning the incidence angle of the incoming photons. The added ability of color sorting and its manipulation could significantly influence the development of possible photonic applications, including nanoscale spectroscopy and sensing.

6.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690981

RESUMO

Helical dichroism (HD), which is defined as the difference in optical absorption between chiral pairs of lights involving left-handed (LH) and right-handed (RH) optical vortices (OVs) carrying orbital angular momentum (OAM), is a promising way to characterize chiral materials. In the current major methods of OV generation using spatial light modulators (SLMs), the speed of OAM switching is typically as slow as 100 Hz, which is comparable to low-frequency noise, making precise chiral detection difficult. Here, we theoretically propose and experimentally demonstrate a rapid modulation of the LH and RH OVs at around 50 kHz. This modulation is achieved through a rapid modulation of circularly polarized lights carrying spin angular momentum (SAM), combined with a SAM-OAM conversion technique. We establish a theory not only for rapid OV modulation but also for HD measurements using the modulated OVs. We experimentally verify the theory using helical phase holograms drawn on a SLM as a pseudo-HD active sample. Our work addresses the limitations of current methods and offers a new avenue for precise HD measurements, paving the way for the development of sensitive chiral-optical spectroscopy techniques.

7.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33148646

RESUMO

Optical force is a powerful tool to actuate micromachines. Conventional approaches often require focusing and steering an incident laser beam, resulting in a bottleneck for the integration of the optically actuated machines. Here, we propose a linear nanomotor based on a plasmonic particle that generates, even when illuminated with a plane wave, a lateral optical force due to its directional side scattering. This force direction is determined by the orientation of the nanoparticle rather than a field gradient or propagation direction of the incident light. We demonstrate the arrangements of the particles allow controlling the lateral force distributions with the resolution beyond the diffraction limit, which can produce movements, as designed, of microobjects in which they are embedded without shaping and steering the laser beam. Our nanomotor to engineer the experienced force can open the door to a new class of micro/nanomechanical devices that can be entirely operated by light.

8.
Sci Rep ; 10(1): 9938, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555405

RESUMO

In this study, surface plasmon resonance (SPR) wavelength shifts due to molecular electronic absorptions in the far-ultraviolet (FUV, < 200 nm) and deep-ultraviolet (DUV, < 300 nm) regions were investigated by attenuated total reflectance (ATR) spectroscopy. Due to the strong absorption in the DUV region, N,N-dimethylformamide (DMF) significantly increased the SPR wavelength shift of Al film. On the other hand, no such shift enhancement was observed in the visible region for Au film because DMF does not have absorbance compared to non-absorbing materials such as water and alcohols. The enhanced SPR wavelength shift, caused by the overlap between SPR and molecular resonance wavelengths in FUV-DUV region, is expected to result in high sensitivity for resonant materials.

9.
Phys Rev E ; 99(2-1): 022119, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934295

RESUMO

It is often regarded that the dwell time (or residence time, escape time, trapping duration) of trapped Brownian particles is described by the multiplication of two separate factors, i.e., the diffusive traveling time of the trapping domain size without taking into account the trapping force, and the stochastic event of overcoming the trapping energy by thermal one instantaneously. However, we show that the ratio of dwell time to the typical traveling time for the trapping domain size depends on the shape of the force field. The shape of the trapping potential affects this ratio even if the trapping energy gap is the same and the smooth potential has a single minimum. Our finding suggests the possible application of the potential shape to realize the desired trapping characteristics.

10.
Sci Rep ; 7(1): 5934, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725007

RESUMO

Surface plasmon resonance (SPR) sensors detect refractive index changes on metal thin films and are frequently used in aqueous solutions as bio- and chemical-sensors. Recently, we proposed new SPR sensors using aluminum (Al) thin films that work in the far- and deep-ultraviolet (FUV-DUV, 120-300 nm) regions and investigated SPR properties by an attenuated total reflectance (ATR) based spectrometer. The FUV-DUV-SPR sensors are expected to have three advantages compared to visible-SPR sensors: higher sensitivity, material selectivity, and surface specificity. However, in this study, it was revealed that the Al thin film on a quartz prism cannot be used as the FUV-DUV-SPR sensor in water solutions. This is because its SPR wavelength shifts to the visible region owing to the presence of water. On the other hand, the SPR wavelength of the Al thin film on the sapphire prism remained in the DUV region even in water. In addition, the SPR wavelength shifted to longer wavelengths with increasing refractive index on the Al thin film. These results mean that the Al thin film on the sapphire prism can be used as the FUV-DUV-SPR sensor in solutions, which may lead to the development of novel and sophisticated SPR sensors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa