Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602917

RESUMO

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Hematopoese , Transdução de Sinais , Comunicação Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662776

RESUMO

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Assuntos
Actinas , Adesão Celular , Matriz Extracelular , Talina , Animais , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Actinas/metabolismo , Actinas/genética , Sítios de Ligação , Adesão Celular/genética , Citoesqueleto/metabolismo , Citoesqueleto/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Integrinas/genética , Mutação , Ligação Proteica , Talina/metabolismo , Talina/genética
3.
Proc Natl Acad Sci U S A ; 120(45): e2303018120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903259

RESUMO

Regulation of stem cells requires coordination of the cells that make up the stem cell niche. Here, we describe a mechanism that allows communication between niche cells to coordinate their activity and shape the signaling environment surrounding resident stem cells. Using the Drosophila hematopoietic organ, the lymph gland, we show that cells of the hematopoietic niche, the posterior signaling center (PSC), communicate using gap junctions (GJs) and form a signaling network. This network allows PSC cells to exchange Ca2+ signals repetitively which regulate the hematopoietic niche. Disruption of Ca2+ signaling in the PSC or the GJ-mediated network connecting niche cells causes dysregulation of the PSC and blood progenitor differentiation. Analysis of PSC-derived cell signaling shows that the Hedgehog pathway acts downstream of GJ-mediated Ca2+ signaling to modulate the niche microenvironment. These data show that GJ-mediated communication between hematopoietic niche cells maintains their homeostasis and consequently controls blood progenitor behavior.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Sinalização do Cálcio , Proteínas Hedgehog/metabolismo , Drosophila/metabolismo , Diferenciação Celular , Junções Comunicantes/metabolismo , Homeostase , Nicho de Células-Tronco , Hematopoese/fisiologia
4.
PLoS Genet ; 18(9): e1010417, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36174062

RESUMO

Gametogenesis requires coordinated signaling between germ cells and somatic cells. We previously showed that Gap junction (GJ)-mediated soma-germline communication is essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentiation. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether the function of these signals is restricted to the earliest stages of spermatogenesis. Here we carried out comprehensive structure/function analysis of Zpg using insights obtained from the protein structure of innexins to design mutations aimed at selectively perturbing different regulatory regions as well as the channel pore of Zpg. We identify the roles of various regulatory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. Moreover, mutations designed to selectively disrupt, based on size and charge, the passage of cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Mutations were identified that progressed through early germline and soma development, but exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility or sterility. Our work shows that specific signals that pass through GJs regulate the transition between different stages of gametogenesis.


Assuntos
Junções Comunicantes , Sêmen , Masculino , Animais , Sêmen/metabolismo , Junções Comunicantes/fisiologia , Conexinas/genética , Conexinas/metabolismo , Espermatogênese/genética , Células Germinativas/metabolismo
5.
Development ; 147(14)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32580934

RESUMO

Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.


Assuntos
Adesão Celular , Matriz Extracelular/metabolismo , Actinas/metabolismo , Animais , Movimento Celular , Forma Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Integrinas/metabolismo , Masculino , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Pigmentação , Talina/genética , Talina/metabolismo
6.
Development ; 146(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30890573

RESUMO

Hematopoiesis requires coordinated cell signals to control the proliferation and differentiation of progenitor cells. In Drosophila, blood progenitors, called prohemocytes, which are located in a hematopoietic organ called the lymph gland, are regulated by the Salvador-Warts-Hippo pathway. In epithelial cells, the Hippo pathway integrates diverse biological inputs, such as cell polarity and cell-cell contacts, but Drosophila blood cells lack the conspicuous polarity of epithelial cells. Here, we show that the septate-junction components Cora and NrxIV promote Hippo signaling in the lymph gland. Depletion of septate-junction components in hemocytes produces similar phenotypes to those observed in Hippo pathway mutants, including increased differentiation of immune cells. Our analysis places septate-junction components as upstream regulators of the Hippo pathway where they recruit Merlin to the membrane. Finally, we show that interactions of septate-junction components with the Hippo pathway are a key functional component of the cellular immune response following infection.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Junções Íntimas/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Junções Íntimas/genética
7.
Development ; 146(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509968

RESUMO

In teleost fish, the multinucleate yolk syncytial layer functions as an extra-embryonic signaling center to pattern mesendoderm, coordinate morphogenesis and supply nutrients to the embryo. External yolk syncytial nuclei (e-YSN) undergo microtubule-dependent movements that distribute the nuclei over the large yolk mass. How e-YSN migration proceeds, and the role of the yolk microtubules, is not understood, but it is proposed that e-YSN are pulled vegetally as the microtubule network shortens from the vegetal pole. Live imaging revealed that nuclei migrate along microtubules, consistent with a cargo model in which e-YSN are moved down the microtubules by direct association with motor proteins. We found that blocking the plus-end directed microtubule motor kinesin significantly attenuated yolk nuclear movement. Blocking the outer nuclear membrane LINC complex protein Syne2a also slowed e-YSN movement. We propose that e-YSN movement is mediated by the LINC complex, which functions as the adaptor between yolk nuclei and motor proteins. Our work provides new insights into the role of microtubules in morphogenesis of an extra-embryonic tissue and further contributes to the understanding of nuclear migration mechanisms during development.


Assuntos
Movimento Celular , Núcleo Celular/metabolismo , Células Gigantes/citologia , Modelos Biológicos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Dineínas/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Imagem com Lapso de Tempo
8.
J Cell Sci ; 131(24)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30446511

RESUMO

Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.


Assuntos
Adesão Celular/fisiologia , Junções Célula-Matriz/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Matriz Extracelular/metabolismo , Talina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Adesão Celular/genética , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Integrinas/genética , Integrinas/metabolismo , Mutação , Ligação Proteica , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
9.
PLoS Genet ; 13(9): e1007026, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957323

RESUMO

Spermatogenesis is a dynamic developmental process requiring precisely timed transitions between discrete stages. Specifically, the germline undergoes three transitions: from mitotic spermatogonia to spermatocytes, from meiotic spermatocytes to spermatids, and from morphogenetic spermatids to spermatozoa. The somatic cells of the testis provide essential support to the germline throughout spermatogenesis, but their precise role during these developmental transitions has not been comprehensively explored. Here, we describe the identification and characterization of genes that are required in the somatic cells of the Drosophila melanogaster testis for progress through spermatogenesis. Phenotypic analysis of candidate genes pinpointed the stage of germline development disrupted. Bioinformatic analysis revealed that particular gene classes were associated with specific developmental transitions. Requirement for genes associated with endocytosis, cell polarity, and microtubule-based transport corresponded with the development of spermatogonia, spermatocytes, and spermatids, respectively. Overall, we identify mechanisms that act specifically in the somatic cells of the testis to regulate spermatogenesis.


Assuntos
Redes Reguladoras de Genes , Espermatogênese , Testículo/citologia , Animais , Diferenciação Celular , Biologia Computacional , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica , Masculino , Meiose/genética , Mitose/genética , Interferência de RNA , Espermátides/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
10.
J Cell Sci ; 129(15): 2912-24, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27311483

RESUMO

The development of three-dimensional tissue architecture requires precise control over the attachment of cells to the extracellular matrix (ECM). Integrins, the main ECM-binding receptors in animals, are regulated in multiple ways to modulate cell-ECM adhesion. One example is the conformational activation of integrins by extracellular signals ('outside-in activation') or by intracellular signals ('inside-out activation'), whereas another is the modulation of integrin turnover. We demonstrate that outside-in activation regulates integrin turnover to stabilize tissue architecture in vivo Treating Drosophila embryos with Mg(2+) and Mn(2+), known to induce outside-in activation, resulted in decreased integrin turnover. Mathematical modeling combined with mutational analysis provides mechanistic insight into the stabilization of integrins at the membrane. We show that as tissues mature, outside-in activation is crucial for regulating the stabilization of integrin-mediated adhesions. This data identifies a new in vivo role for outside-in activation and sheds light on the key transition between tissue morphogenesis and maintenance.


Assuntos
Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Animais , Cátions Bivalentes/farmacologia , Adesão Celular , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Ligantes , Proteínas Mutantes/metabolismo , Mutação Puntual/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo
11.
Development ; 142(15): 2598-609, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116660

RESUMO

Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling between the soma and germ line. When gap junctions between the soma and germ line are disrupted, germline differentiation is blocked and germline stem cells are not maintained. In the soma, gap junctions are required to regulate proliferation and differentiation. Localization and RNAi-mediated knockdown studies reveal that gap junctions in the fly testis are heterotypic channels containing Zpg (Inx4) and Inx2 on the germ line and the soma side, respectively. Overall, our results show that bi-directional gap junction-mediated signalling is essential to coordinate the soma and germ line to ensure proper spermatogenesis in Drosophila. Moreover, we show that stem cell maintenance and differentiation in the testis are directed by gap junction-derived cues.


Assuntos
Comunicação Celular/fisiologia , Drosophila/crescimento & desenvolvimento , Junções Comunicantes/fisiologia , Células Germinativas/fisiologia , Espermatogênese/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Microscopia Confocal , Microscopia Eletrônica , Interferência de RNA , Testículo/metabolismo , Testículo/ultraestrutura
12.
Development ; 142(2): 268-81, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503408

RESUMO

Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.


Assuntos
Diferenciação Celular/fisiologia , Microambiente Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Células Germinativas/crescimento & desenvolvimento , Profilinas/metabolismo , Espermatogênese/fisiologia , Animais , Masculino , Permeabilidade
13.
PLoS Genet ; 10(11): e1004756, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393120

RESUMO

Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.


Assuntos
Adesão Celular/genética , Desenvolvimento Embrionário/genética , Integrinas/genética , Talina/genética , Alelos , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Integrinas/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Talina/metabolismo
14.
J Cell Sci ; 125(Pt 23): 5647-57, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22992465

RESUMO

Integrins are heterodimeric adhesion receptors that link the extracellular matrix (ECM) to the cytoskeleton. Binding of the scaffold protein, talin, to the cytoplasmic tail of ß-integrin causes a conformational change of the extracellular domains of the integrin heterodimer, thus allowing high-affinity binding of ECM ligands. This essential process is called integrin activation. Here we report that the Z-band alternatively spliced PDZ-motif-containing protein (Zasp) cooperates with talin to activate α5ß1 integrins in mammalian tissue culture and αPS2ßPS integrins in Drosophila. Zasp is a PDZ-LIM-domain-containing protein mutated in human cardiomyopathies previously thought to function primarily in assembly and maintenance of the muscle contractile machinery. Notably, Zasp is the first protein shown to co-activate α5ß1 integrins with talin and appears to do so in a manner distinct from known αIIbß3 integrin co-activators.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Animais , Drosophila , Matriz Extracelular/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Talina/metabolismo
15.
Nat Cell Biol ; 9(12): 1413-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17982446

RESUMO

Interactions between stem cells and their surrounding microenvironment, or niche, are critical for the establishment and maintenance of stem-cell properties. The adult Drosophila testis contains a morphologically discrete stem-cell niche, the 'hub'. The small cluster of non-dividing, somatic hub cells at the anterior tip of the fly testis is contacted by the germline stem cells (GSCs), which retain their stem-cell character through the direct association with the hub. Here we show that integrin-mediated adhesion is important for maintaining the correct position of embryonic hub cells during gonad morphogenesis. The misplaced hub in integrin-deficient embryos directs the orientation of cell divisions in the presumptive GSCs, a hallmark of the active germline stem-cell niche. A decrease in integrin-mediated adhesion in adult testes, which resulted in a loss of the hub and the stem-cell population, revealed the importance of hub-cell anchoring. Finally, we show that an extracellular matrix (ECM) is present around the gonad during late embryogenesis and that this ECM is defective in integrin-deficient gonads. On the basis of our data, we propose that integrins are required for the attachment of the hub cells to the ECM, which is essential for maintaining the stem-cell niche.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Integrinas/fisiologia , Células-Tronco/citologia , Animais , Adesão Celular , Diferenciação Celular , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Matriz Extracelular/fisiologia , Células Germinativas/citologia , Integrinas/genética , Masculino , Mutação , Testículo/citologia , Testículo/embriologia , Testículo/crescimento & desenvolvimento
16.
PLoS Genet ; 7(2): e1001295, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347281

RESUMO

Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease.


Assuntos
Proteínas de Drosophila/genética , Cadeias alfa de Integrinas/genética , Desenvolvimento Muscular/genética , Fosfatidilinositóis/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Compartimento Celular/genética , Compartimento Celular/fisiologia , Movimento Celular , Classe II de Fosfatidilinositol 3-Quinases/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Miopatias Congênitas Estruturais/genética , Fosfatidilinositóis/genética , Proteínas Tirosina Fosfatases não Receptoras/fisiologia
17.
Cell Rep ; 43(7): 114399, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944833

RESUMO

The basement membrane (BM) is an extracellular matrix that plays important roles in animal development. A spatial heterogeneity in composition and structural properties of the BM provide cells with vital cues for morphogenetic processes such as cell migration or cell polarization. Here, using the Drosophila egg chamber as a model system, we show that the BM becomes heterogeneous during development, with a reduction in Collagen IV density at the posterior pole and differences in the micropattern of aligned fiber-like structures. We identified two AdamTS matrix proteases required for the proper elongated shape of the egg chamber, yet the molecular mechanisms by which they act are different. Stall is required to establish BM heterogeneity by locally limiting Collagen IV protein density, whereas AdamTS-A alters the micropattern of fiber-like structures within the BM at the posterior pole. Our results suggest that AdamTS proteases control BM heterogeneity required for organ shape.

18.
Elife ; 122024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805376

RESUMO

Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Lipase , Espermatogênese , Testículo , Triglicerídeos , Animais , Masculino , Triglicerídeos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Testículo/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Lipase/metabolismo , Lipase/genética , Gotículas Lipídicas/metabolismo , Espermatozoides/metabolismo
19.
J Cell Sci ; 124(Pt 11): 1844-56, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558413

RESUMO

Adhesion receptors play diverse roles during animal development and require precise spatiotemporal regulation, which is achieved through the activity of their binding partners. Integrins, adhesion receptors that mediate cell attachment to the extracellular matrix (ECM), connect to the intracellular environment through the cytoplasmic adapter protein talin. Talin has two essential functions: orchestrating the assembly of the intracellular adhesion complex (IAC), which associates with integrin, and regulating the affinity of integrins for the ECM. Talin can bind to integrins through two different integrin-binding sites (IBS-1 and IBS-2, respectively). Here, we have investigated the roles of each in the context of Drosophila development. We find that although IBS-1 and IBS-2 are partially redundant, they each have specialized roles during development: IBS-1 reinforces integrin attachment to the ECM, whereas IBS-2 reinforces the link between integrins and the IAC. Disruption of each IBS has different developmental consequences, illustrating how the functional diversity of integrin-mediated adhesion is achieved.


Assuntos
Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Drosophila melanogaster/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Integrinas/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
20.
Nat Cell Biol ; 8(6): 601-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16648844

RESUMO

Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.


Assuntos
Citoesqueleto/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Drosophila , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Talina/genética , Asas de Animais/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa