Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mov Disord ; 39(2): 391-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155513

RESUMO

BACKGROUND: Neuroinflammation might contribute to the pathogenesis of multiple systemic atrophy (MSA). However, specific alterations in the peripheral inflammatory and immune profiles of patients with MSA remain unclear. OBJECTIVES: To determine the peripheral inflammatory and immune profiles of patients with MSA and their potential value as biomarkers for facilitating clinical diagnosis and monitoring disease severity. METHODS: This cross-sectional study included 235, 240, and 235 patients with MSA, patients with Parkinson's disease (PD), and healthy controls (HCs), respectively. Inflammatory and immune parameters were measured in peripheral blood, differences between groups were assessed, and clusters were analyzed. Associations between the parameters and clinical characteristics of MSA were assessed using Spearman and partial correlation analyses. RESULTS: Significant differences were observed especially in monocytes, neutrophils-to-lymphocyte ratio (NLR) and neutrophils-to-lymphocyte ratio (MPV) between MSA patients and HCs (P < 0.01). Monocytes and uric acid (UA) levels were also significantly different between the MSA and PD patients (P < 0.05). The combination of NLR and MPV distinguished MSA-P patients from HCs (areas under the curve = 0.824). In addition, complement components C4 and C3 were significantly correlated with the Scale Outcomes in PD for Autonomic Symptoms and Wexner scale, whereas immunoglobulin G (IgG) was significantly correlated with scores of Unified Multiple System Atrophy Rating Scale (P < 0.05). CONCLUSIONS: In MSA patients, monocytes, NLR and MPV might serve as potential diagnostic biomarkers, whereas MLR, C3, C4, and IgG significantly correlate with disease severity. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Estudos Transversais , Biomarcadores , Imunoglobulina G
2.
Brain Behav Immun ; 115: 543-554, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989443

RESUMO

Autoimmunity plays a key role in the pathogenesis of Alzheimer's disease (AD). However, whether autoantibodies in peripheral blood can be used as biomarkers for AD has been elusive. Serum samples were obtained from 1,686 participants, including 767 with AD, 146 with mild cognitive impairment (MCI), 255 with other neurodegenerative diseases, and 518 healthy controls. Specific autoantibodies were measured using a custom-made immunoassay. Multivariate support vector machine models were employed to investigate the correlation between serum autoantibody levels and disease states. As a result, seven candidate AD-specific autoantibodies were identified, including MAPT, DNAJC8, KDM4D, SERF1A, CDKN1A, AGER, and ASXL1. A classification model with high accuracy (area under the curve (AUC) = 0.94) was established. Importantly, these autoantibodies could distinguish AD from other neurodegenerative diseases and out-performed amyloid and tau protein concentrations in cerebrospinal fluid in predicting cognitive decline (P < 0.001). This study indicated that AD onset and progression are possibly accompanied by an unappreciated serum autoantibody response. Therefore, future studies could optimize its application as a convenient biomarker for the early detection of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Disfunção Cognitiva/diagnóstico , Autoanticorpos , Progressão da Doença , Fragmentos de Peptídeos/líquido cefalorraquidiano , Histona Desmetilases com o Domínio Jumonji , Proteínas do Tecido Nervoso
3.
Pharmacol Res ; 202: 107114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395207

RESUMO

Calcium-independent phospholipase A2ß (iPLA2ß), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2ß deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2ß, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.


Assuntos
Mutação
4.
Adv Sci (Weinh) ; 11(12): e2306321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227367

RESUMO

Paroxysmal kinesigenic dyskinesia (PKD) is associated with a disturbance of neural circuit and network activities, while its neurophysiological characteristics have not been fully elucidated. This study utilized the high-density electroencephalogram (hd-EEG) signals to detect abnormal brain activity of PKD and provide a neural biomarker for its clinical diagnosis and PKD progression monitoring. The resting hd-EEGs are recorded from two independent datasets and then source-localized for measuring the oscillatory activities and function connectivity (FC) patterns of cortical and subcortical regions. The abnormal elevation of theta oscillation in wildly brain regions represents the most remarkable physiological feature for PKD and these changes returned to healthy control level in remission patients. Another remarkable feature of PKD is the decreased high-gamma FCs in non-remission patients. Subtype analyses report that increased theta oscillations may be related to the emotional factors of PKD, while the decreased high-gamma FCs are related to the motor symptoms. Finally, the authors established connectome-based predictive modelling and successfully identified the remission state in PKD patients in dataset 1 and dataset 2. The findings establish a clinically relevant electroencephalography profile of PKD and indicate that hd-EEG can provide robust neural biomarkers to evaluate the prognosis of PKD.


Assuntos
Distonia , Humanos , Eletroencefalografia , Encéfalo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38737298

RESUMO

Background: Parkinson's disease (PD) and Essential tremor (ET) are the two most common tremor diseases with recognized genetic pathogenesis. The overlapping clinical features suggest they may share genetic predispositions. Our previous study systematically investigated the association between rare coding variants in ET-associated genes and early-onset PD (EOPD), and found the suggestive association between teneurin transmembrane protein 4 (TENM4) and EOPD. In the current research, we explored the potential genetic interplay between ET-associated genetic loci/genes and sporadic late-onset PD (LOPD). Methods: We performed whole-genome sequencing in the 1962 sporadic LOPD cases and 1279 controls from mainland China. We first used logistic regression analysis to test the top 16 SNPs identified by the ET genome-wide association study for the association between ET and LOPD. Then we applied the optimized sequence kernel association testing to explore the rare variant burden of 33 ET-associated genes in this cohort. Results: We did not observe a significant association between the included SNPs with LOPD. We also did not discover a significant burden of rare deleterious variants of ET-associated genes in association with LOPD risk. Conclusion: Our results do not support the role of ET-associated genetic loci and variants in LOPD. Highlights: 1962 cases and 1279 controls were recruited to study the potential genetic interplay between ET-associated genetic loci/variants and sporadic LOPD.No significant association between the ET-associated SNPs and LOPD were observed.No significant burden of rare deleterious variants of ET-associated gene in LOPD risk were found.


Assuntos
Tremor Essencial , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Humanos , Tremor Essencial/genética , Doença de Parkinson/genética , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Idoso , Pessoa de Meia-Idade , Predisposição Genética para Doença/genética , Idade de Início , China , Estudos de Casos e Controles
6.
Gut Microbes ; 16(1): 2331434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548676

RESUMO

The role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: Enterocloster asparagiformis, Hungatella hathewayi and Oxalobacter formigenes. Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Idoso de 80 Anos ou mais , Humanos , Eixo Encéfalo-Intestino , Metaboloma , Encéfalo
7.
NPJ Parkinsons Dis ; 10(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167894

RESUMO

Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.

8.
Brain Commun ; 6(4): fcae217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961870

RESUMO

There is an obvious clinical-pathological overlap between essential tremor and some known tremor-associated short tandem repeat expansion disorders. The aim is to analyse whether these short tandem repeat genes, including ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATXN8OS, ATXN10, PPP2R2B, TBP, BEAN1, NOP56, DAB1, ATN1, SADM12 and FMR1, are associated with familial essential tremor patients. Genetic analysis of repeat sizes in tremor-associated short tandem repeat expansions was performed in a large cohort of 515 familial essential tremor probands and 300 controls. The demographic and clinical features among carriers of pathogenic expansions, intermediate repeats and non-carriers were compared. A total of 18 out of 515 (18/515, 3.7%) patients were found to have repeats expansions, including 12 cases (12/515, 2.5%) with intermediate repeat expansions (one ATXN1, eight TBP, two FMR1, one ATN1), and six cases (6/515, 1.2%) with pathogenic expansions (one ATXN1, one ATXN2, one ATXN8OS, one PPP2R2B, one FMR1, one SAMD12). There were no statistically significant differences in intermediate repeats compared to healthy controls. Furthermore, there were no significant differences in demographics and clinical features among individuals with pathogenic expansions, intermediate repeat expansions carriers and non-carriers. Our study indicates that the intermediate repeat expansion in tremor-associated short tandem repeat expansions does not pose an increased risk for essential tremor, and rare pathogenic expansion carriers have been found in the familial essential tremor cohort. The diagnosis of essential tremor based solely on clinical symptoms remains a challenge in distinguishing it from known short tandem repeat expansions diseases with overlapping clinical-pathological features.

9.
Ann Clin Transl Neurol ; 11(8): 2100-2111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924300

RESUMO

OBJECTIVE: Transcranial sonography (TCS) is a noninvasive neuroimaging technique, visualizing deep brain structures and the ventricular system. Although widely employed in diagnosing various movement disorders, such as Parkinson's disease and dystonia, by detecting disease-specific abnormalities, the specific characteristics of the TCS in cerebellar ataxia remain inconclusive. We aimed to assess the potential value of TCS in patients with cerebellar ataxias for disease diagnosis and severity assessment. METHODS: TCS on patients with genetic and acquired cerebellar ataxia, including 94 with spinocerebellar ataxias (SCAs) containing 10 asymptomatic carriers, 95 with cerebellar subtype of multiple system atrophy (MSA-C), and 100 healthy controls (HC), was conducted. Assessments included third ventricle width, substantia nigra (SN) and lentiform nucleus (LN) echogenicity, along with comprehensive clinical evaluations and genetic testing. RESULTS: The study revealed significant TCS abnormalities in patients with cerebellar ataxia, such as enlarged third ventricle widths and elevated rates of hyperechogenic SN and LN. TCS showed high accuracy in distinguishing patients with SCA or MSA-C from HC, with an AUC of 0.870 and 0.931, respectively. TCS abnormalities aided in identifying asymptomatic SCA carriers, effectively differentiating them from HC, with an AUC of 0.725. Furthermore, third ventricle width was significantly correlated with SARA and ICARS scores in patients with SCA3 and SCOPA-AUT scores in patients with MSA-C. The SN area and SARA or ICARS scores in patients with SCA3 were also positively correlated. INTERPRETATION: Our findings illustrate remarkable TCS abnormalities in patients with cerebellar ataxia, serving as potential biomarkers for clinical diagnosis and progression assessment.


Assuntos
Ataxia Cerebelar , Ultrassonografia Doppler Transcraniana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Ultrassonografia Doppler Transcraniana/métodos , Ultrassonografia Doppler Transcraniana/normas , Ataxia Cerebelar/diagnóstico por imagem , Adulto , Idoso , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Ataxias Espinocerebelares/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Biomarcadores , Terceiro Ventrículo/diagnóstico por imagem
10.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
11.
Mech Ageing Dev ; 219: 111940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750970

RESUMO

To clarify the genetic role of phospholipase A2 (PLA2) genes in Parkinson's disease (PD), we performed a genetic association study in large Chinese population cohorts using next-generation sequencing. In this study, we analyzed both rare and common variants of 38 phospholipase A2 genes in two large cohorts. We detected 1558 and 1115 rare variants in these two cohorts, respectively. In both cohorts, we observed suggestive associations between specific subgroups and the risk of PD. At the single-gene level, several genes (PLA2G2D, PLA2G12A, PLA2G12B, PLA2G4F, PNPLA1, PNPLA3, PNPLA7, PLA2G7, PLA2G15, PLAAT5, and ABHD12) are suggestively associated with PD. Meanwhile, 364 and 2261 common variants were identified in two cohorts, respectively. Our study has expanded the genetic spectrum of the PLA2 family genes and suggested potential pathogenetic roles of PLA2 superfamily in PD.


Assuntos
Doença de Parkinson , Fosfolipases A2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático/genética , China/epidemiologia , Estudos de Coortes , População do Leste Asiático , Predisposição Genética para Doença , Doença de Parkinson/genética , Fosfolipases A2/genética
12.
NPJ Parkinsons Dis ; 10(1): 134, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043730

RESUMO

While numerous single nucleotide variants and small indels have been identified in Parkinson's disease (PD), the contribution of structural variants (SVs), copy number variants (CNVs), and short tandem repeats (STRs) remains poorly understood. Here we investigated the association using the high-depth whole-genome sequencing data from 466 Chinese PD patients and 513 controls. Totally, we identified 29,561 SVs, 32,153 CNVs, and 174,905 STRs, and found that CNV deletions were significantly enriched in the end-proportion of autosomal chromosomes in PD. After genome-wide association analysis and replication in an external cohort of 352 cases and 547 controls, we validated that the 1.6 kb-deletion neighboring MUC19, 12.4kb-deletion near RXFP1 and GGGAAA repeats in SLC2A13 were significantly associated with PD. Moreover, the MUC19 deletion and the SLC2A13 5-copy repeat reduced the penetrance of the LRRK2 G2385R variant. Moreover, genes with these variants were dosage-sensitive. These data provided novel insights into the genetic architecture of PD.

13.
EBioMedicine ; 102: 105077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513302

RESUMO

BACKGROUND: An intronic GAA repeat expansion in FGF14 was recently identified as a cause of GAA-FGF14 ataxia. We aimed to characterise the frequency and phenotypic profile of GAA-FGF14 ataxia in a large Chinese ataxia cohort. METHODS: A total of 1216 patients that included 399 typical late-onset cerebellar ataxia (LOCA), 290 early-onset cerebellar ataxia (EOCA), and 527 multiple system atrophy with predominant cerebellar ataxia (MSA-c) were enrolled. Long-range and repeat-primed PCR were performed to screen for GAA expansions in FGF14. Targeted long-read and whole-genome sequencing were performed to determine repeat size and sequence configuration. A multi-modal study including clinical assessment, MRI, and neurofilament light chain was conducted for disease assessment. FINDINGS: 17 GAA-FGF14 positive patients with a (GAA)≥250 expansion (12 patients with a GAA-pure expansion, five patients with a (GAA)≥250-[(GAA)n (GCA)m]z expansion) and two possible patients with biallelic (GAA)202/222 alleles were identified. The clinical phenotypes of the 19 positive and possible positive cases covered LOCA phenotype, EOCA phenotype and MSA-c phenotype. Five of six patients with EOCA phenotype were found to have another genetic disorder. The NfL levels of patients with EOCA and MSA-c phenotypes were significantly higher than patients with LOCA phenotype and age-matched controls (p < 0.001). NfL levels of pre-ataxic GAA-FGF14 positive individuals were lower than pre-ataxic SCA3 (p < 0.001) and similar to controls. INTERPRETATION: The frequency of GAA-FGF14 expansion in a large Chinese LOCA cohort was low (1.3%). Biallelic (GAA)202/222 alleles and co-occurrence with other acquired or hereditary diseases may contribute to phenotypic variation and different progression. FUNDING: This study was funded by the National Key R&D Program of China (2021YFA0805200 to H.J.), the National Natural Science Foundation of China (81974176 and 82171254 to H.J.; 82371272 to Z.C.; 82301628 to L.W.; 82301438 to Z.L.; 82201411 to L.H.), the Innovation Research Group Project of Natural Science Foundation of Hunan Province (2020JJ1008 to H.J.), the Key Research and Development Program of Hunan Province (2020SK2064 to H.J.), the Innovative Research and Development Program of Development and Reform Commission of Hunan Province to H.J., the Natural Science Foundation of Hunan Province (2024JJ3050 to H.J.; 2022JJ20094 and 2021JJ40974 to Z.C.; 2022JJ40783 to L.H.; 2022JJ40703 to Z.L.), the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital, 2020LNJJ12 to H.J.), the Central South University Research Programme of Advanced Interdisciplinary Study (2023QYJC010 to H.J.) and the Science and Technology Innovation Program of Hunan Province (2022RC1027 to Z.C.). D.P. holds a Fellowship award from the Canadian Institutes of Health Research (CIHR).


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Idoso , Humanos , Canadá , Ataxia Cerebelar/genética , Estudos de Coortes , Ataxia de Friedreich/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos
14.
medRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405973

RESUMO

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.

15.
Transl Neurodegener ; 12(1): 59, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098067

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Microbioma Gastrointestinal/fisiologia , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa