Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640930

RESUMO

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Assuntos
Hidroxicolesteróis , Lisossomos , Macrófagos , Microambiente Tumoral , Animais , Hidroxicolesteróis/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Lisossomos/metabolismo , Microambiente Tumoral/imunologia , Fator de Transcrição STAT6/metabolismo , Adenilato Quinase/metabolismo , Camundongos Endogâmicos C57BL , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Reprogramação Metabólica
2.
EMBO J ; 40(24): e108069, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704268

RESUMO

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine-fed mice showed better cold tolerance. In mice with diet-induced obesity, the asparagine-fed group was more responsive to ß3-adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13 C-glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.


Assuntos
Asparagina/farmacologia , Glicólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Células Cultivadas , Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metabolômica , Camundongos
3.
Nature ; 569(7757): 581-585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043749

RESUMO

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Algas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálise , Chlamydomonas reinhardtii/enzimologia , DNA/química , DNA/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilação de DNA , Glioxilatos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Fotossíntese
4.
EMBO J ; 39(24): e105896, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33140861

RESUMO

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/patologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/virologia , Feminino , Genômica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolômica/métodos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
5.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
6.
Hepatology ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816045

RESUMO

BACKGROUND AND AIMS: HCC is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc (Zn) deficiency. This study aims to understand how Zn could affect macrophage function and its application for HCC therapy. APPROACH AND RESULTS: Zn 2+ and the Zn transporter 1 (ZNT1, solute carrier family 30 member 1) were markedly reduced in intrahepatic macrophages from patients with HCC and from mouse liver tumors. Lower ZNT1 expression was associated with higher IL-6 production and shorter survival time in patients with HCC. Critically, ZNT1 regulated endosomal Zn 2+ levels for endocytosis of toll-like receptor 4 and programmed cell death ligand 1, thereby decreasing macrophage-induced inflammation and immunosuppression to protect from liver tumors. Myeloid-specific deletion of ZNT1 in mice increased chronic inflammation, liver fibrosis, tumor numbers, and size. Notably, Zn supplementation could reduce inflammation and surface programmed cell death ligand 1 expression in macrophages with the increased CD8 + T cell cytotoxicity, which synergized the antitumor efficacy of Sorafenib/Lenvatinib. CONCLUSIONS: Our study proposes a new concept that ZNT1 and Zn regulate endosome endocytosis to maintain surface receptors, and Zn supplements might be synergized with chemotherapy to treat inflammation-associated tumors, especially those containing programmed cell death ligand 1 + myeloid cells.

7.
Nutr J ; 23(1): 28, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429722

RESUMO

BACKGROUND: The relationship between circulating bile acids (BAs) and kidney function among patients with type 2 diabetes is unclear. We aimed to investigate the associations of circulating concentrations of BAs, particularly individual BA subtypes, with chronic kidney disease (CKD) in patients of newly diagnosed type 2 diabetes. METHODS: In this cross-sectional study, we included 1234 newly diagnosed type 2 diabetes who participated in an ongoing prospective study, the Dongfeng-Tongji cohort. Circulating primary and secondary unconjugated BAs and their taurine- or glycine-conjugates were measured using ultraperformance liquid chromatography-tandem mass spectrometry. CKD was defined as eGFR < 60 ml/min per 1.73 m2. Logistic regression model was used to compute odds ratio (OR) and 95% confidence interval (CI). RESULTS: After adjusting for multiple testing, higher levels of total primary BAs (OR per standard deviation [SD] increment: 0.78; 95% CI: 0.65-0.92), cholate (OR per SD: 0.78; 95% CI: 0.66-0.92), chenodeoxycholate (OR per SD: 0.81; 95% CI: 0.69-0.96), glycocholate (OR per SD: 0.81; 95% CI: 0.68-0.96), and glycochenodeoxycholate (OR per SD: 0.82; 95% CI: 0.69-0.97) were associated with a lower likelihood of having CKD in patients with newly diagnosed type 2 diabetes. No significant relationships between secondary BAs and odds of CKD were observed. CONCLUSIONS: Our findings showed that higher concentrations of circulating unconjugated primary BAs and their glycine-conjugates, but not taurine-conjugates or secondary BAs, were associated with lower odds of having CKD in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Humanos , Ácidos e Sais Biliares , Estudos Transversais , Estudos Prospectivos , Diabetes Mellitus Tipo 2/epidemiologia , Taurina/química , Glicina , Insuficiência Renal Crônica/epidemiologia
8.
J Am Chem Soc ; 145(47): 25513-25517, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37955622

RESUMO

Amino compounds are widely present in complex mixtures in chemistry, biology, medicine, food, and environmental sciences involving drug impurities and metabolisms of proteins, biogenic amines, neurotransmitters, and pyrimidine in biological systems. Nuclear magnetic resonance (NMR) spectroscopy is an excellent tool for simultaneously identifying and quantifying these in-mixture compounds but has a limit-of-detection (LOD) over several micromolarities (>5 µM). To break such a sensitivity barrier, we developed a sensitive and rapid method by combining the probe-induced sensitivity enhancement and nonuniform-sampling-based 1H-13C HSQC 2D-NMR (PRISE-NUS-HSQC). We introduced two 13CH3 tags for each analyte to respectively increase the 1H and 13C abundances for up to 6 and 200 fold. This enabled high-resolution detection of 0.4-0.8 µM analytes in mixtures in 5 mm tubes with a 5 min acquisition on 600 MHz spectrometers. The method is much more sensitive and faster than traditional 1H-13C HSQC methods (∼50 µM, >10 h). Using sulfanilic acid as a single reference, furthermore, we established a database covering chemical shifts and relative-response factors for >100 compounds, enabling reliable identification and quantification. The method showed good quantitation linearity, accuracy, precision, and applicability in multiple biological matrices, offering a rapid and sensitive approach for quantitative analysis of large cohorts of chemical, medicinal, metabolomic, food, and other mixtures.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Misturas Complexas
9.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513217

RESUMO

BACKGROUND: The perturbation of fatty acid metabolism in heart failure (HF) has been a critical issue. It is unclear whether the amounts of circulating carnitines will benefit primary etiology diagnosis and prognostic prediction in HF. This study was designed to assess the diagnostic and prognostic values of serum carnitine profiles between ischemic and non-ischemic derived heart failure. METHODS: HF patients (non-ischemic dilated cardiomyopathy: DCM-HF, n = 98; ischemic heart disease: IHD-HF, n = 63) and control individuals (n = 48) were enrolled consecutively. The serum carnitines were quantitatively measured using the UHPLC-MS/MS method. All patients underwent a median follow-up of 28.3 months. Multivariate Cox regression analysis was performed during the prognosis evaluation. RESULTS: Amongst 25 carnitines measured, all of them were increased in HF patients, and 20 acylcarnitines were associated with HF diagnosis independently. Seven acylcarnitines were confirmed to increase the probability of DCM diagnosis independently. The addition of isobutyryl-L-carnitine and stearoyl-L-carnitine to conventional clinical factors significantly improved the area under the receiver operating characteristic curve (ROC) from 0.771 to 0.832 (p = 0.023) for DCM-HF diagnosis (calibration test for the composite model: Hosmer-Lemeshow χ2 = 7.376, p = 0.497 > 0.05). Using a multivariate COX survival analysis adjusted with clinical factors simultaneously, oleoyl L-carnitine >300 nmol/L (HR = 2.364, 95% CI = 1.122-4.976, p = 0.024) and isovaleryl-L-carnitine <100 nmol/L (HR = 2.108, 95% CI = 1.091-4.074, p = 0.026) increased the prediction of all-cause mortality independently, while linoleoyl-L-carnitine >420 nmol/L, succinyl carnitine >60 nmol/L and isovaleryl-L-carnitine <100 nmol/L increased the risk of HF rehospitalization independently. CONCLUSIONS: Serum carnitines could not only serve as diagnostic and predictive biomarkers in HF but also benefit the identification of HF primary etiology and prognosis.


Assuntos
Insuficiência Cardíaca , Espectrometria de Massas em Tandem , Humanos , Insuficiência Cardíaca/diagnóstico , Carnitina , Análise Multivariada
10.
Clin Chem ; 68(8): 1094-1107, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35708664

RESUMO

BACKGROUND: The roles of individual and co-regulated lipid molecular species in the development of type 2 diabetes (T2D) and mediation from metabolic risk factors remain unknown. METHODS: We conducted profiling of 166 plasma lipid species in 2 nested case-control studies within 2 independent cohorts of Chinese adults, the Dongfeng-Tongji and the Jiangsu non-communicable disease cohorts. After 4.61 (0.15) and 7.57 (1.13) years' follow-up, 1039 and 520 eligible participants developed T2D in these 2 cohorts, respectively, and controls were 1:1 matched to cases by age and sex. RESULTS: We found 27 lipid species, including 10 novel ones, consistently associated with T2D risk in the 2 cohorts. Differential correlation network analysis revealed significant correlations of triacylglycerol (TAG) 50:3, containing at least one oleyl chain, with 6 TAGs, at least 3 of which contain the palmitoyl chain, all downregulated within cases relative to controls among the 27 lipids in both cohorts, while the networks also both identified the oleyl chain-containing TAG 50:3 as the central hub. We further found that 13 of the 27 lipids consistently mediated the association between adiposity indicators (body mass index, waist circumference, and waist-to-height ratio) and diabetes risk in both cohorts (all P < 0.05; proportion mediated: 20.00%, 17.70%, and 17.71%, and 32.50%, 28.73%, and 33.86%, respectively). CONCLUSIONS: Our findings suggested notable perturbed co-regulation, inferred from differential correlation networks, between oleyl chain- and palmitoyl chain-containing TAGs before diabetes onset, with the oleyl chain-containing TAG 50:3 at the center, and provided novel etiological insight regarding lipid dysregulation in the progression from adiposity to overt T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Lipidômica , Adiposidade , Adulto , China , Humanos , Obesidade , Estudos Prospectivos , Fatores de Risco , Triglicerídeos
11.
PLoS Biol ; 17(6): e3000292, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181061

RESUMO

Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics.


Assuntos
Biologia Computacional/métodos , Escherichia coli/metabolismo , Prata/metabolismo , Prata/uso terapêutico , Antibacterianos/farmacologia , Anti-Infecciosos , Bactérias , Cromatografia Líquida/métodos , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Metabolômica , Proteômica
12.
Environ Microbiol ; 23(11): 6420-6432, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34459073

RESUMO

Mycosporine-like amino acids (MAAs) were widespread in diverse organisms to attenuate UV radiation. We recently characterized the large, complicated MAA mycosporine-2-(4-deoxygadusolyl-ornithine) in desert cyanobacterium Nostoc flagelliforme. Synthesis of this MAA requires the five-gene cluster mysABDC2C3. Here, bioinformatic analysis indicated that mysC duplication within five-gene mys clusters is strictly limited to drought-tolerant cyanobacteria. Phylogenic analysis distinguished these duplicated MysCs into two clades that separated from canonical MysCs. Heterologous expression of N. flagelliforme mys genes in Escherichia coli showed that MysAB produces 4-deoxygadusol. The ATP-grasp ligase of MysC3 catalyses the linkage of the δ- or ε-amino group of ornithine/lysine to 4-deoxygadusol, yielding mycosporine-ornithine or mycosporine-lysine respectively. The ATP-grasp ligase of MysC2 strictly condenses the α-amino group of mycosporine-ornithine to another 4-deoxygadusol. MysD (D-Ala-D-Ala ligase) functions following MysC2 to catalyse the formation of mycosporine-2-(4-deoxygadusolyl-ornithine). High arginine content likely provides a greater pool of ornithine over other amino acids during rehydration of desiccated N. flagelliforme. Duplication of ATP-grasp ligases is specific for the use of substrates that have two amino groups (such as ornithine) for the production of complicated MAAs with multiple chromophores. This five-enzyme biosynthesis pathway for complicated MAAs is a novel adaptation of cyanobacteria for UV tolerance in drought environments.


Assuntos
Aminoácidos , Ligases , Trifosfato de Adenosina , Dessecação , Glicina/metabolismo , Ligases/genética , Raios Ultravioleta
13.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684729

RESUMO

Carbonyl-containing metabolites widely exist in biological samples and have important physiological functions. Thus, accurate and sensitive quantitative analysis of carbonyl-containing metabolites is crucial to provide insight into metabolic pathways as well as disease mechanisms. Although reversed phase liquid chromatography electrospray ionization mass spectrometry (RPLC-ESI-MS) is widely used due to the powerful separation capability of RPLC and high specificity and sensitivity of MS, but it is often challenging to directly analyze carbonyl-containing metabolites using RPLC-ESI-MS due to the poor ionization efficiency of neutral carbonyl groups in ESI. Modification of carbonyl-containing metabolites by a chemical derivatization strategy can overcome the obstacle of sensitivity; however, it is insufficient to achieve accurate quantification due to instrument drift and matrix effects. The emergence of stable isotope-coded derivatization (ICD) provides a good solution to the problems encountered above. Thus, LC-MS methods that utilize ICD have been applied in metabolomics including quantitative targeted analysis and untargeted profiling analysis. In addition, ICD makes multiplex or multichannel submetabolome analysis possible, which not only reduces instrument running time but also avoids the variation of MS response. In this review, representative derivatization reagents and typical applications in absolute quantification and submetabolome profiling are discussed to highlight the superiority of the ICD strategy for detection of carbonyl-containing metabolites.


Assuntos
Monóxido de Carbono/análise , Monóxido de Carbono/química , Metabolômica/métodos , Isótopos de Carbono/química , Carboxil e Carbamoil Transferases , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Marcação por Isótopo/métodos , Metaboloma/fisiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
14.
J Proteome Res ; 19(6): 2457-2470, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393034

RESUMO

Seed germination is essential for plant survival, germplasm resource preservation, and worldwide food supplies, although the germination-associated seed biochemical variations are not fully understood. With the NMR-based metabonomics, we quantitatively analyzed the comprehensive metabolite composition (metabonome) of mung-bean (Vigna radiata) seeds at eight time points of germination covering all three phases. We found that mung-bean seed metabonomes were dominated by 63 metabolites including lipids, amino acids, oligo-/monosaccharides, cyclitols, cholines, organic acids, nucleotides/-sides, nicotinates, and the shikimate pathway-mediated secondary metabolites. During germination, metabolic changes included mainly the degradation of proteins and raffinose family oligosaccharides, glycolysis, tricarboxylic acid (TCA) cycle, anaerobic respiration, biosynthesis of osmolytes and antioxidants together with the metabolisms of nucleotides/-sides, nicotinates, and amino acids. Oligosaccharide degradation was the primary energy source for germination, which coupled with the mobilization of starch and protein storages to produce sugars and amino acids for biomaterial and energy generations. Osmotic and redox regulations were prerequisites for seed germination together with mitochondrial reparations and generations to enable TCA cycle. During the postgermination growth stage (phase-3), the use of small molecules including amino acids and saccharides was switched to meet the growth demands of radicle cells. Small metabolites passed freely through seed testa leaking into the culture media during early germination but were reabsorbed by seed cells around the postgermination growth stage. Extra after-ripening accelerated these metabolic processes of seeds in phase-1, especially the biosynthesis of cyclitols, choline, and nicotinates, increasing the germination uniformity in terms of speed and percentage. Germination-resistant seeds were incapable of activating the germination-associated metabolic processes.


Assuntos
Fabaceae , Vigna , Germinação , Metabolômica , Sementes
15.
J Proteome Res ; 19(8): 3352-3363, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32498518

RESUMO

Plant seed germination involving dynamic water uptakes and biochemical changes is essential for preservation of plant germplasm resource and worldwide food supply. To understand the germination-associated compartmental biochemistry changes, we quantitatively analyzed the metabolite composition (metabonome) for embryonic axes, cotyledons, and testae of mung bean (Vigna radiata) seeds in three germination phases using the NMR-based metabonomics approach. We found that three structures of mung bean seeds had distinct metabonomic phenotypes dominated by 53 metabolites including amino acids, carbohydrates, organic acids, choline metabolites, nucleotides/nucleosides, and shikimate-mediated secondary metabolites together with calcium and magnesium cations. During germination, all three seed structures had outstanding but distinct metabonomic changes. Both embryonic axis and cotyledon showed remarkable metabolic changes related to degradation of carbohydrates and proteins, metabolism of amino acids, nucleotides/nucleosides, and choline together with energy metabolism and shikimate-mediated plant secondary metabolism. The metabonomic changes in these two structures were mostly related to multiple functions for biochemical activities in the former and nutrient mobilizations in the latter. In contrast, testa metabonomic changes mainly reflected the metabolite leakages from the other two structures. Phase 1 of germination was featured with degradation of oligosaccharides and proteins and recycling of stored nucleic acids together with anaerobic metabolisms, whereas phase 2 was dominated by energy metabolism, biosynthesis of osmolytes, and plant secondary metabolites. These provided essential metabolic information for understanding the biochemistry associated with early events of seed germination and possible metabolic functions of different seed structures for plant development.


Assuntos
Germinação , Vigna , Metabolômica , Fenótipo , Sementes
16.
J Proteome Res ; 19(1): 238-247, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31603327

RESUMO

In recent years, tumor microenvironment (TME) has been recognized as potential targets for tumor treatment and the tumor vascular system is one of such targets. Fusing truncated tissue factor (tTF) with pH low insertion peptides (pHLIP), tTF-pHLIP, can target tumor vessels owing to its acidic TME and cause tumor vessel occlusion by blood clotting and subsequently effectively inhibit tumor growth. To evaluate its bioeffects, we exposed the tTF-pHLIP to normal mice and mice xenograft with B16F10 tumor and analyzed the metabolic profiling of various tissues and biofluids including plasma and urine from mice treated with and without tTF-pHLIP. A combination of nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry and ultra-high-performance liquid chromatography-mass spectrometry was employed in the study. We found that tTF-pHLIP treatment can effectively reduce tumor size and concurrently ameliorate tumor-induced alterations in the TCA cycle metabolism and lipid metabolism. In addition, we found that toxicity of tTF-pHLIP to normal mice is minor and exposure of the tTF-pHLIP induced oxidative stress to the system. Hence, we concluded that tTF-pHLIP is of low toxicity and effective in reducing tumor size as well as rebalancing tumor-induced metabolic derailment.


Assuntos
Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Proteínas de Membrana/genética , Metaboloma/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Feminino , Espectroscopia de Ressonância Magnética , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Tromboplastina/genética , Carga Tumoral , Microambiente Tumoral
17.
Cell Tissue Res ; 380(1): 143-153, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31811407

RESUMO

We recently reported low-density lipoprotein receptor-related protein 6 (LRP6) decreased in dilated cardiomyopathy hearts, and cardiac-specific knockout mice displayed lethal heart failure through activation of dynamin-related protein 1 (Drp1). We also observed lipid accumulation in LRP6 deficiency hearts, but the detailed molecular mechanisms are unclear. Here, we detected fatty acids components in LRP6 deficiency hearts and explored the potential molecular mechanisms. Fatty acid analysis by GC-FID/MS revealed cardiac-specific LRP6 knockout induced the higher level of total fatty acids and some medium-long-chain fatty acids (C16:0, C18:1n9 and C18:2n6) than in control hearts. Carnitine palmitoyltransferase 1b (CPT1b), a rate-limiting enzyme of mitochondrial ß-oxidation in adult heart, was sharply decreased in LRP6 deficiency hearts, coincident with the activation of Drp1. Drp1 inhibitor greatly improved cardiac dysfunction and attenuated the increase in total fatty acids and fatty acids C16:0, C18:1n9 in LRP6 deficiency hearts. It also greatly inhibited the decrease in the cardiac expression of CPT1b and the transcriptional factors CCCTC-binding factor (CTCF) and c-Myc induced by cardiac-specific LRP6 knockout in mice. C-Myc but not CTCF was identified to regulate CPT1b expression and lipid accumulation in cardiomyocytes in vitro. The present study indicated cardiac-specific LRP6 knockout induced lipid accumulation by Drp1/CPT1b pathway in adult mice, and c-Myc is involved in the process. It suggests that LRP6 regulates fatty acid metabolism in adult heart.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Dinaminas/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Dinaminas/deficiência , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Transfecção
18.
Ann Clin Microbiol Antimicrob ; 19(1): 15, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299442

RESUMO

Endometriosis (EMS) is a multifactorial disease that affects 10%-15% women of reproductive age and is associated with chronic pelvic pain and infertility. The pathogenesis of EMS has not been consistently explained until now. In this study, we involved 36 endometriosis patients and 14 control subjects who performed laparoscopic surgery due to gynecological benign tumor. The samples from lower third of vagina (CL), posterior vaginal fornix (CU), cervical mucus (CV), endometrium (ET) and peritoneal fluid (PF), were collected and sequenced by 16S rRNA amplicon. The continuous change of the microbiota distribution was identified along the reproductive tract. The flora in lower reproductive tract (CL, CU) were dominated by Lactobacillus. Significant difference of the community diversity began showing in the CV of EMS patients and gradually increased upward the reproductive tract. It indicates the microbiota in cervical samples is expected to be an indicator for the risk of EMS. This study also highlights the decreasing of Lactobacillus in vaginal flora and the increasing of signature Operational Taxonomic Units (OTUs) in transaction zone (CV) and upper reproductive tract (ET, PF) of EMS patients, which reflect the alteration of microbial community associated with EMS, participation of specific colonized bacteria in the EMS pathogenesis and relationship between microbiota and development of disease.


Assuntos
Endometriose/microbiologia , Microbiota/genética , Vagina/microbiologia , Adulto , Técnicas de Tipagem Bacteriana , China , Estudos de Coortes , Feminino , Humanos , RNA Ribossômico 16S/genética , Fatores de Risco , Adulto Jovem
19.
Alzheimers Dement ; 16(5): 779-788, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32270572

RESUMO

INTRODUCTION: Metabolomics provide a promising tool to understand the pathogenesis and to identify novel biomarkers of dementia. This study aimed to determine circulating metabolites associated with incident dementia in a Chinese cohort, and whether a selected metabolite panel could predict dementia. METHODS: Thirty-eight metabolites in baseline serum were profiled by nuclear magnetic resonance in 1440 dementia-free participants followed 5 years in the Shanghai Aging Study. RESULTS: Higher serum levels of glutamine and O-acetyl-glycoproteins were associated with increased risk of dementia, whereas glutamate, tyrosine, acetate, glycine, and phenylalanine were negatively related to incident dementia. A panel of five metabolites selected by least absolute shrinkage and selection operator within cross-validation regression analysis could predict incident dementia with an area under the receiver-operating characteristic curve of 0.72. DISCUSSION: We identified seven candidate serum metabolic biomarkers for dementia. These findings and the underlying biological mechanisms need to be further replicated and elucidated in future studies.


Assuntos
Envelhecimento , Biomarcadores , Demência , Metabolômica , Idoso , Povo Asiático , Biomarcadores/sangue , Biomarcadores/metabolismo , China , Estudos de Coortes , Demência/sangue , Demência/metabolismo , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino
20.
J Proteome Res ; 18(9): 3317-3327, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241341

RESUMO

Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.


Assuntos
Fusariose/genética , Glucosiltransferases/genética , Micotoxinas/genética , Doenças das Plantas/genética , Animais , Resistência à Doença/genética , Fusariose/microbiologia , Fusarium/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicólise/genética , Humanos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Saccharomyces cerevisiae , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/genética , Trealose/metabolismo , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa