Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 66(1): 154-162.e10, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344083

RESUMO

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Células CHO , Cílios/metabolismo , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Receptor Smoothened/genética , Transfecção
2.
Hepatology ; 76(5): 1466-1481, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35102596

RESUMO

BACKGROUND AND AIMS: NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS: Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS: This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.


Assuntos
Insulinas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipogênese/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Lovastatina/metabolismo , Insulinas/metabolismo , Camundongos Endogâmicos C57BL
3.
PLoS Genet ; 15(7): e1008289, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323021

RESUMO

Schnyder corneal dystrophy (SCD) is a rare genetic eye disease characterized by corneal opacification resulted from deposition of excess free cholesterol. UbiA prenyltransferase domain-containing protein-1 (UBIAD1) is an enzyme catalyzing biosynthesis of coenzyme Q10 and vitamin K2. More than 20 UBIAD1 mutations have been found to associate with human SCD. How these mutants contribute to SCD development is not fully understood. Here, we identified HMGCR as a binding partner of UBIAD1 using mass spectrometry. In contrast to the Golgi localization of wild-type UBIAD1, SCD-associated mutants mainly resided in the endoplasmic reticulum (ER) and competed with Insig-1 for HMGCR binding, thereby preventing HMGCR from degradation and increasing cholesterol biosynthesis. The heterozygous Ubiad1 G184R knock-in (Ubiad1G184R/+) mice expressed elevated levels of HMGCR protein in various tissues. The aged Ubiad1G184R/+ mice exhibited corneal opacification and free cholesterol accumulation, phenocopying clinical manifestations of SCD patients. In summary, these results demonstrate that SCD-associated mutations of UBIAD1 impair its ER-to-Golgi transportation and enhance its interaction with HMGCR. The stabilization of HMGCR by UBIAD1 increases cholesterol biosynthesis and eventually causes cholesterol accumulation in the cornea.


Assuntos
Colesterol/metabolismo , Distrofias Hereditárias da Córnea/genética , Dimetilaliltranstransferase/genética , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/metabolismo , Mutação , Animais , Distrofias Hereditárias da Córnea/metabolismo , Dimetilaliltranstransferase/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos
4.
J Virol ; 89(13): 6805-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903345

RESUMO

UNLABELLED: Hepatitis C virus (HCV), a single-stranded positive-sense RNA virus of the Flaviviridae family, causes chronic liver diseases, including hepatitis, cirrhosis, and cancer. HCV infection is critically dependent on host lipid metabolism, which contributes to all stages of the viral life cycle, including virus entry, replication, assembly, and release. 25-Hydroxycholesterol (25HC) plays a critical role in regulating lipid metabolism, modulating immune responses, and suppressing viral pathogens. In this study, we showed that 25HC and its synthesizing enzyme cholesterol 25-hydroxylase (CH25H) efficiently inhibit HCV infection at a postentry stage. CH25H inhibits HCV infection by suppressing the maturation of SREBPs, critical transcription factors for host lipid biosynthesis. Interestingly, CH25H is upregulated upon poly(I · C) treatment or HCV infection in hepatocytes, which triggers type I and III interferon responses, suggesting that the CH25H induction constitutes a part of host innate immune response. To our surprise, in contrast to studies in mice, CH25H is not induced by interferons in human cells and knockdown of STAT-1 has no effect on the induction of CH25H, suggesting CH25H is not an interferon-stimulated gene in humans but rather represents a primary and direct host response to viral infection. Finally, knockdown of CH25H in human hepatocytes significantly increases HCV infection. In summary, our results demonstrate that CH25H constitutes a primary innate response against HCV infection through regulating host lipid metabolism. Manipulation of CH25H expression and function should provide a new strategy for anti-HCV therapeutics. IMPORTANCE: Recent studies have expanded the critical roles of oxysterols in regulating immune response and antagonizing viral pathogens. Here, we showed that one of the oxysterols, 25HC and its synthesizing enzyme CH25H efficiently inhibit HCV infection at a postentry stage via suppressing the maturation of transcription factor SREBPs that regulate lipid biosynthesis. Furthermore, we found that CH25H expression is upregulated upon poly(I·C) stimulation or HCV infection, suggesting CH25H induction constitutes a part of host innate immune response. Interestingly, in contrast to studies in mice showing that ch25h is an interferon-stimulated gene, CH25H cannot be induced by interferons in human cells but rather represents a primary and direct host response to viral infection. Our studies demonstrate that the induction of CH25H represents an important host innate response against virus infection and highlight the role of lipid effectors in host antiviral strategy.


Assuntos
Hepacivirus/imunologia , Hidroxicolesteróis/metabolismo , Imunidade Inata , Fatores Imunológicos/metabolismo , Esteroide Hidroxilases/metabolismo , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Técnicas de Silenciamento de Genes , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos
5.
Cell Metab ; 6(2): 115-28, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17681147

RESUMO

The membrane-anchored ubiquitin ligase gp78 promotes degradation of misfolded endoplasmic reticulum (ER) proteins and sterol-regulated degradation of HMG-CoA reductase. It was known previously that Ufd1 plays a critical role in ER-associated degradation (ERAD) together with Npl4 and VCP. The VCP-Ufd1-Npl4 complex recognizes polyubiquitin chains and transfers the ubiquitinated proteins to the proteasome. Here we show that Ufd1 directly interacts with gp78 and functions as a cofactor. Ufd1 enhances the E3 activity of gp78, accelerates the ubiquitination and degradation of reductase, and eventually promotes receptor-mediated uptake of low-density lipoprotein. Furthermore, we demonstrate that the monoubiquitin-binding site in Ufd1 is required for the enhancement of gp78 activity and that the polyubiquitin-binding site in Ufd1 is critical for a postubiquitination step in ERAD. In summary, our study identifies Ufd1 as a cofactor of gp78, reveals an unappreciated function of Ufd1 in the ubiquitination reaction during ERAD, and illustrates that Ufd1 plays a critical role in cholesterol metabolism.


Assuntos
Colesterol/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas/metabolismo , Receptores de Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Aminoácidos , Animais , Sítios de Ligação , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Estabilidade Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/metabolismo , Modelos Biológicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
6.
Cell Metab ; 29(4): 886-900.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661930

RESUMO

Metabolic reprogramming plays an important role in supporting tumor growth. However, little is known about the metabolic alterations that promote cancer metastasis. In this study, we identify acyl-CoA thioesterase 12 (ACOT12) as a key player in hepatocellular carcinoma (HCC) metastasis. The expression of ACOT12 is significantly down-regulated in HCC tissues and is closely associated with HCC metastasis and poor survival of HCC patients. Gain- and loss-of-function studies demonstrate that ACOT12 suppresses HCC metastasis both in vitro and in vivo. Further mechanistic studies reveal that ACOT12 regulates the cellular acetyl-CoA levels and histone acetylation in HCC cells and that down-regulation of ACOT12 promotes HCC metastasis by epigenetically inducing TWIST2 expression and the promotion of epithelial-mesenchymal transition. Taken together, our findings link the alteration of acetyl-CoA with HCC metastasis and imply that ACOT12 could be a prognostic marker and a potential therapeutic target for combating HCC metastasis.


Assuntos
Acetilcoenzima A/metabolismo , Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/metabolismo , Tioléster Hidrolases/metabolismo , Acetilcoenzima A/genética , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tioléster Hidrolases/genética
7.
Nat Commun ; 9(1): 5138, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510211

RESUMO

Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.


Assuntos
Colesterol/biossíntese , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Esteróis/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Estrutura Molecular , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevenção & controle , Proteólise/efeitos dos fármacos , Esteróis/química , Ubiquitinação/efeitos dos fármacos
10.
PLoS One ; 9(11): e112632, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426949

RESUMO

Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s) due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM) system was used to isolate and characterize the 25-hydroxycholesterol (25-HC)-resistant and SR-12813-resistant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP)-2 terminating at amino acids (aa) 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP). Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.


Assuntos
Colesterol/biossíntese , Hidroximetilglutaril-CoA Redutases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutagênese Insercional/métodos , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Células CHO , Cricetulus , Difosfonatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Testes Genéticos/métodos , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Hidroxicolesteróis/farmacologia , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lentivirus/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/química , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
11.
Cell Metab ; 16(2): 213-25, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22863805

RESUMO

gp78 is a membrane-anchored ubiquitin ligase mediating the degradation of HMG-CoA reductase (HMGCR) and Insig-1. As a rate-limiting enzyme in cholesterol biosynthesis, HMGCR undergoes rapid sterol-promoted degradation. In contrast, destruction of Insig-1 releases its inhibition on SREBP and stimulates the expression of lipogenic genes. Thus, gp78 has opposite effects on lipid biosynthesis. We here generated liver-specific gp78 knockout (L-gp78(-/-)) mice and showed that although the degradation of HMGCR was blunted, SREBP was suppressed due to the elevation of Insig-1/-2, and therefore the lipid biosynthesis was decreased. The L-gp78(-/-) mice were protected from diet-/age-induced obesity and glucose intolerance. The livers of L-gp78(-/-) mice produced more FGF21, which activated thermogenesis in brown adipocytes and enhanced energy expenditure. Together, the major function of gp78 in liver is regulating lipid biosynthesis through SREBP pathway. Ablation of gp78 decreases the lipid levels and increases FGF21, and is beneficial to patients with metabolic diseases.


Assuntos
Hiperlipidemias/genética , Resistência à Insulina/genética , Lipídeos/biossíntese , Fígado/metabolismo , Receptores do Fator Autócrino de Motilidade/deficiência , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Animais , Glicemia , Cromatografia Líquida , Fatores de Crescimento de Fibroblastos/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Receptores do Fator Autócrino de Motilidade/metabolismo
12.
Cell Metab ; 13(1): 44-56, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21195348

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are major transcription factors activating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In this study, we identified a small molecule, betulin, that specifically inhibited the maturation of SREBP by inducing interaction of SREBP cleavage activating protein (SCAP) and Insig. Inhibition of SREBP by betulin decreased the biosynthesis of cholesterol and fatty acid. In vivo, betulin ameliorated diet-induced obesity, decreased the lipid contents in serum and tissues, and increased insulin sensitivity. Furthermore, betulin reduced the size and improved the stability of atherosclerotic plaques. Our study demonstrates that inhibition SREBP pathway can be employed as a therapeutic strategy to treat metabolic diseases including type II diabetes and atherosclerosis. Betulin, which is abundant in birch bark, could be a leading compound for development of drugs for hyperlipidemia.


Assuntos
Hiperlipidemias/tratamento farmacológico , Resistência à Insulina/fisiologia , Placa Aterosclerótica/tratamento farmacológico , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Triterpenos/farmacologia , Animais , Colesterol/biossíntese , Colesterol/genética , Regulação para Baixo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/biossíntese , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Triterpenos/análise , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa