Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 102(12): 3357-3367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726492

RESUMO

Arsenic trioxide (ATO) treatment effectively prolongs the overall survival of patients with acute promyelocytic leukemia (APL). Mutations in the oncogene PML::RARA were found in patients with ATO-resistant and relapsed APL. However, some relapsed patients do not have such mutations. Here, we performed microarray analysis of samples from newly diagnosed and relapsed APL, and found different microRNA (miRNA) expression patterns between these two groups. Among the differentially expressed miRNAs, miR-603 was expressed at the lowest level in relapsed patients. The expression of miR-603 and its predicted target tropomyosin-related kinase B (TrkB) were determined by PCR and Western blot. Proliferation was measured using an MTT assay, while apoptosis, cell cycle and CD11b expression were analyzed using flow cytometry. In APL patients, the expression of miR-603 was negatively correlated with that of TrkB. miR-603 directly targeted TrkB and downregulated TrkB expression in the APL cell line NB4. miR-603 increased cell proliferation by promoting the differentiation and inhibiting the apoptosis of NB4 cells. This study shows that the miR-603/ TrkB axis may be a potent therapeutic target for relapsed APL.


Assuntos
Antineoplásicos , Arsenicais , Leucemia Promielocítica Aguda , MicroRNAs , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Arsenicais/farmacologia , Óxidos/farmacologia , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Apoptose/genética , MicroRNAs/genética , Proliferação de Células , Diferenciação Celular/genética , Antineoplásicos/uso terapêutico
2.
Int J Biol Macromol ; 269(Pt 2): 132188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723808

RESUMO

Biodegradable polylactic acid (PLA)/nano­zinc oxide (ZnO)/additives non-woven slices were prepared by melt blending method. The effects of antibacterial agent nano-ZnO, antioxidant pentaerythrityl tetrakis-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (1010), and chain extender multi-functional epoxy (ADR), on the melt flow rate, mechanical properties, thermal stabilities and micromorphology of the slices were investigated. The melt flow rate decreased from 26.94 g/10 min to 17.76 g/10 min, and the tensile strength increased from 10.518 MPa to 30.427 MPa with the increase of nano-ZnO and additives content. The slices were further spunbonded. The wettability and antibacterial properties of PLA/nano-ZnO/additives antibacterial non-wovens were studied, and the antibacterial action mechanism was clarified. The results showed that the biodegradable PLA/nano-ZnO/additives antibacterial non-wovens were prepared continuously successfully. The prepared non-woven fabrics exhibited good hydrophobicity and antibacterial properties. The mechanism study shows that zinc ion produced by nano-ZnO and photocatalytic reaction make the fabrics have good antibacterial activity at low nano-ZnO content. When nano-ZnO concentration reaches 1.5 wt%, the antibacterial rate against Escherichia coli and Staphylococcus aureus reaches 98.52 % and 98.13 %, respectively.


Assuntos
Antibacterianos , Poliésteres , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Resistência à Tração , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa