Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746248

RESUMO

In recent years, the unmanned aerial vehicle (UAV) remote sensing technology has been widely used in the planning, design and maintenance of urban distributed photovoltaic arrays (UDPA). However, the existing studies rarely concern the UAV swarm scheduling problem when applied to remoting sensing in UDPA maintenance. In this study, a novel scheduling model and algorithm for UAV swarm remote sensing in UDPA maintenance are developed. Firstly, the UAV swarm scheduling tasks in UDPA maintenance are described as a large-scale global optimization (LSGO) problem, in which the constraints are defined as penalty functions. Secondly, an adaptive multiple variable-grouping optimization strategy including adaptive random grouping, UAV grouping and task grouping is developed. Finally, a novel evolutionary algorithm, namely cooperatively coevolving particle swarm optimization with adaptive multiple variable-grouping and context vector crossover/mutation strategies (CCPSO-mg-cvcm), is developed in order to effectively optimize the aforementioned UAV swarm scheduling model. The results of the case study show that the developed CCPSO-mg-cvcm significantly outperforms the existing algorithms, and the UAV swarm remote sensing in large-scale UDPA maintenance can be optimally scheduled by the developed methodology.


Assuntos
Algoritmos , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos
2.
ISA Trans ; 86: 181-191, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30409439

RESUMO

With increasing penetration of variable loads and intermittent distributed energy resources (DERs) with uncertainty and variability in distribution systems, the power system gradually inherits some features (e.g., lack of rotating inertia), which leads to the voltage instability in microgrids. As a means to provide stability support for smart grid against high penetration of intermittent DERs, inverter-based smart loads across the distribution grid has been suggested recently. Accordingly, this paper presents a delay-tolerant distributed voltage control scheme based on consensus protocol for multiple-cooperative smart loads through effective demand-side management in ac microgrids, in which the time-delay effect on transmission communication occurred in information exchanges is considered. The proposed distributed voltage control scheme always enables the output voltage of each smart load to be synchronized to their reference value, which improves the robustness of system stability against transmission communication delays. The Lyapunov-Krasovskii functions are employed to analyze the stability of our proposed distributed control scheme, then the delay-independent stability conditions are derived, which allows some large communication delays. Moreover, the sensitivity analysis is developed to show how the time delay affects system dynamics in order to validate the robustness of proposed delay-independent stability conditions. Furthermore, a sparse communication network is employed to implement the proposed distributed control protocols, which thus satisfies the plug-and-play requirement of smart microgrids. Finally, the simulation results of an ac microgrid in MATLAB/SimPowerSystems are presented to demonstrate the effectiveness of the proposed control methodology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa