Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598530

RESUMO

This paper presents a groundbreaking Ku-band 20W RF front-end power amplifier (PA), designed to address numerous challenges encountered by satellite communication systems, including those pertaining to stability, linearity, cost, and size. The manuscript commences with an exhaustive discussion of system design and operational principles, emphasizing the intricacies of low-noise amplification, and incorporating key considerations such as noise factors, stability analysis, gain, and gain flatness. Subsequently, an in-depth study is conducted on various components of the RF chain, including the pre-amplification module, driver-amplification module, and final-stage amplification module. The holistic design extends to the inclusion of the display and control unit, featuring the power-control module, monitoring module, and overall layout design of the PA. It is meticulously tailored to meet the specific demands of satellite communication. Following this, a thorough exploration of electromagnetic simulation and measurement results ensues, providing validation for the precision and reliability of the proposed design. Finally, the feasibility of that design is substantiated through systematic system design, prototype production, and exhaustive experimental testing. It is noteworthy that, in the space-simulation environmental test, emphasis is placed on the excellent performance of the Star Ku-band PA within the 13.75GHz to 14.5GHz frequency range. Detailed power scan measurements reveal a P1dB of 43dBm, maintaining output power flatness < ± 0.5dBm across the entire frequency and temperature spectrum. Third-order intermodulation scan measurements indicate a third-order intermodulation of ≤ -23dBc. Detailed results of power monitoring demonstrate a range from +18dBm to +54dBm. Scans of spurious suppression and harmonic suppression, meanwhile, show that the PA evinces spurious suppression ≤ -65dBc and harmonic suppression ≤ -60dBc. Rigorous phase-scan measurements exhibit a phase-shift adjustment range of 0° to 360°, with a step of 5.625°, and a phase-shift accuracy of 0.5dB. Detailed data from gain-scan measurements show a gain-adjustment range of 0dB to 30dB, with a gain flatness of ± 0.5dB. Attenuation error is ≤ 1%. These test parameters perfectly align with the practical application requirements of the technical specifications. When compared to existing Ku-band PAs, our design reflects a deeper consideration of specific requirements in satellite communication, ensuring its outstanding performance and uniqueness. This PA features good stability, high linearity, low cost, and compact modularity, ensuring continuous and stable power output. These features position the proposed system as a leader within the market. Successful orbital deployment not only validates its operational stability; it also makes a significant contribution to the advancement of China's satellite PA technology, generating positive socio-economic benefits.


Assuntos
Amplificadores Eletrônicos , Comunicações Via Satélite , Reprodutibilidade dos Testes , Desenho de Equipamento , Simulação por Computador
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770469

RESUMO

Bessel beams are attaining keen interest in the current era considering their unique non-diffractive, self-healing nature and their diverse applications spanning over a broad spectral range of microwave to optical frequencies. However, conventional generators are not only bulky and complex but are also limited in terms of numerical aperture (NA) and efficiency. In this study, we experimentally develop a wavelength-independent Bessel beam generator through custom-designed metasurfaces to accomplish high resolution and large depth-of-focus imaging. These meta-axicons exhibit a high NA of up to 0.7 with an ability to generate Bessel beams with a full width at half maximum (FWHM) of 300 nm (~λ/2) and a depth of focus (DOF) of 153 µm (~261λ) in a broad spectral range of 500-700 nm. This excitation approach can provide a promising avenue for cutting-edge technology and applications related to Bessel beams for imaging along with a high axial resolution and an ultra-large depth of focus.

3.
Front Chem ; 9: 641670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912538

RESUMO

Tumor cells circulating in the peripheral blood are the prime cause of cancer metastasis and death, thus the identification and discrimination of these rare cells are crucial in the diagnostic of cancer. As a label-free detection method without invasion, Raman spectroscopy has already been indicated as a promising method for cell identification. This study uses a confocal Raman spectrometer with 532 nm laser excitation to obtain the Raman spectrum of living cells from the kidney, liver, lung, skin, and breast. Multivariate statistical methods are applied to classify the Raman spectra of these cells. The results validate that these cells can be distinguished from each other. Among the models built to predict unknown cell types, the quadratic discriminant analysis model had the highest accuracy. The demonstrated analysis model, based on the Raman spectrum of cells, is propitious and has great potential in the field of biomedical for classifying circulating tumor cells in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa