Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 205(1): 177-190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772916

RESUMO

The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P50). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P50 root-branch > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P50 root-branch and environmental factors associated with aridity. We found a positive P50 root-branch relationship across species, and evidence that P50 root-branch increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P50) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.


Assuntos
Raízes de Plantas , Xilema , Água
2.
Int J Biol Macromol ; 138: 556-564, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336116

RESUMO

Native and acetylated broken-rice starches (nanocrystals) with different degrees of substitution (DS) and their corresponding films were individually prepared, and the drug release profiles, weight loss, solubility and dispersion and surface morphology were comparatively studied. Bovine serum albumin (BSA) was used as a model drug. Acetylated native starch (ANS) DS 2.58, acetylated starch nanocrystals (ASN) DS 0.98, ASN DS 1.86, and ASN DS 2.72 were observed to be very soluble in chloroform. BSA was released rapidly from the native rice starch (NS) and ANS DS 2.58 films. ASN with high DS significantly slowed down the release of BSA from films, the percentages of BSA released from film ASN DS 2.72 only reached to 13% after 3.5 weeks release, and the release data followed Korsmeyer-Peppas equation. Further studies reveal that the particle size of ASN DS 2.72 was smallest, and the weight loss of ASN DS 2.72 film was lowest. The results demonstrate that acetylation and nanometer particle form of rice starch film can effectively retard protein drug release, and the prepared films based on ASN with high DS from broken rice may be suitable for the controlled protein delivery.


Assuntos
Membranas Artificiais , Nanopartículas/química , Oryza/química , Proteínas/química , Amido/química , Acetilação , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas/administração & dosagem , Solubilidade , Análise Espectral , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa