Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 59(34): 3123-3128, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580652

RESUMO

Sialic acids are sugars present in many animal glycoproteins and are of particular interest in biopharmaceuticals, where a lack of sialylation can reduce bioactivity. Here, we describe how α-2,6-sialyltransferase from Photobacterium damselae can be used to markedly increase the level of sialylation of CHO-produced α-1-antitrypsin. Detailed analysis of the sialylation products showed that in addition to the expected α-2,6-sialylation of galactose, a second disialyl galactose motif Neu5Ac-α2,3(Neu5Ac-α2,6)Gal was produced, which, to our knowledge, had never been detected on a mammalian glycoprotein. We exploited this disialyl galactose activity of the P. damselae in a multienzyme reaction to produce a highly sialylated α-1-antitrypsin. The influence of this unique disialylation on the in vitro activity of α-1-antitrypsin was studied, and a toolkit of mass spectrometry methods for identifying this new disialyl galactose motif in complex mixtures was developed.


Assuntos
Galactose/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Photobacterium/enzimologia , Proteínas Recombinantes/metabolismo , Sialiltransferases/metabolismo , alfa 1-Antitripsina/metabolismo
2.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066037

RESUMO

Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


Assuntos
Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Animais , Células CHO , Cricetulus , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
3.
Biotechnol J ; 19(7): e2400092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987222

RESUMO

Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.


Assuntos
Anticorpos Monoclonais , Biomassa , Reatores Biológicos , Medicamentos Biossimilares , Técnicas de Cultura de Células , Cricetulus , Células CHO , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Perfusão/métodos
4.
Sci Rep ; 9(1): 16768, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727983

RESUMO

Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Eritropoetina/genética , Eritropoetina/metabolismo , Glutamato-Amônia Ligase/genética , Engenharia de Proteínas/métodos , Sistemas CRISPR-Cas , Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Glicosilação , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa