Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(12): e0296520, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837014

RESUMO

Warming strongly stimulates soil nitrous oxide (N2O) emission, contributing to the global warming trend. Submerged paddy soils exhibit huge N2O emission potential; however, the N2O emission pathway and underlying mechanisms for warming are not clearly understood. We conducted an incubation experiment using 15N to investigate the dynamics of N2O emission at controlled temperatures (5, 15, 25, and 35°C) in 125% water-filled pore space. The community structures of nitrifiers and denitrifiers were determined via high-throughput sequencing of functional genes. Our results showed that elevated temperature sharply enhanced soil N2O emission from submerged paddy soil. Denitrification was the main contributor, accounting for more than 90% of total N2O emission at all treatment temperatures. N2O flux was coordinatively regulated by nirK-, nirS-, and nosZ-containing denitrifiers but not ammonia-oxidizing archaea or ammonia-oxidizing bacteria. The nirS-containing denitrifiers were more sensitive to temperature shifts, especially at a lower temperature range (5 to 25°C), and showed a stronger correlation with N2O flux than that of nirK-containing denitrifiers. In contrast, nosZ-containing denitrifiers exhibited substantial variation at higher temperatures (15 to 35°C), thereby playing an important role in N2O consumption. Certain taxa of nirS- and nosZ-containing denitrifiers regulated N2O flux, including nirS-containing denitrifiers affiliated with Rhodanobacter and Cupriavidus as well as nosZ-containing denitrifiers affiliated with Azoarcus and Azospirillum. Together, these findings suggest that elevated temperature can significantly increase N2O emission from denitrification in submerged paddy soils by shifting the overall community structures and enriching some indigenous taxa of nirS- and nosZ-containing denitrifiers. IMPORTANCE The interdependence between global warming and greenhouse gas N2O has always been the hot spot. However, information on factors contributing to N2O and temperature-dependent community structure changes is scarce. This study demonstrated high-temperature-induced N2O emission from submerged paddy soils, mainly via stimulating denitrification. Further, we speculate that key functional denitrifiers drive N2O emission. This study showed that denitrifiers were more sensitive to temperature rise than nitrifiers, and the temperature sensitivity differed among denitrifier communities. N2O-consuming denitrifiers (nosZ-containing denitrifiers) were more sensitive at a higher temperature range than N2O-producing denitrifiers (nirS-containing denitrifiers). This study's findings help predict N2O fluxes under different degrees of warming and develop strategies to mitigate N2O emissions from paddy fields based on microbial community regulation.


Assuntos
Poluentes Atmosféricos/análise , Desnitrificação , Óxido Nitroso/análise , Microbiologia do Solo , Poluentes do Solo/análise , Aquecimento Global , Concentração de Íons de Hidrogênio , Nitrificação , Oryza , Solo/química , Temperatura
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(7): 1990-2, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19798989

RESUMO

The 10 nm gold nanoparticles were prepared by Frens procedure. Using tri-sodium citrate as reducer of AgNO3, and 10 nm gold nanoparticles as seed, the (Au)core(Ag)shell nanoparticles the size of about 30 nm were prepared at 90 degrees C for 10 min. Then it was separated by centrifuge at 10000 r x min(-1) for 15 min to obtain pure (Au)core(Ag)shell nanoparticles. In pH 3.8 sodium acetate-acetic acid buffer solution, hydroxyl free radical from Fenton reaction between Fe(II)-H2O2 oxidized (Au)core(Ag)shell nanoparticles to form silver ions. The silver ions in the centrifugal solutions can be measured by flame atomic absorption spectrometry at 328.1 nm. The silver ions in the centrifugal solutions increased with the H2O2 concentration increasing, and the absorption value at 328. 1 nm was enhanced linearly. The influence factors such as pH value, buffer solution volume, concentration of (Au)core(Ag)shell and Fe(II), reaction temperature and time, and centrifuging velocity and time were considered, respectively. Under the conditions of 0.20 mL pH 3.8 sodium acetate-acetic acid buffer solution, 50 microL of 2.0 mmol x L(-1) FeSO4, 60 microL of 2.94 x 10(-4) mol x L(-1) (Au)core(Ag)shell nanoparticle solution, reaction time of 20 min at 60 degrees C, and centrifugalization at 14 000 rpm for 10 min, the increased value deltaA is proportional to the H2O2 concentration (c) from 2. 64 to 42.24 micromol x L(-1), with a detection limit of 0.81 micromol x L(-1). The regress equation was deltaA = 0.014c-0.013 1, with a coefficient of 0.998 4. The effect of foreign substances such as 100-times glucose, Cu2+, Mg2+, Ca2+, 50-times urea, bovine serum albumin, Mn2+, Pb2+, and 30-times Cr3+ on the determination of 13.2 micromol x L(-1) H2O2 was examined respectively, with a relative error of +/- 10%. Results showed that there was no interference. This assay showed high sensitivity and good selectivity for quantitative determination of H2O2 in waste water samples, with satisfactory results. The analytical results were in agreement with that of the reference results.

3.
Ying Yong Sheng Tai Xue Bao ; 30(4): 1344-1350, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-30994297

RESUMO

We investigated the variation of denitrifying communities in rice rhizosphere at tillering and booting stages in comparison with bulk soils with a pot experiment. The techniques of quantitative polymerase chain reaction (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) were used to measure the abundance and community composition of denitrifiers (narG and nosZ), respectively. The results showed that the potential denitrification activity in the rhizosphere at tillering stage was significantly lower than bulk soils. No significant difference was detected between the rhizosphere and bulk soils at booting stage. The abundance of both narG- and nosZ-containing denitrifying bacteria was significantly higher in rhizosphere than in bulk soils at both tillering and booting stages. In comparison with narG-containing community, community composition and diversity of nosZ-containing bacteria were more sensitive to rice growth. In conclusion, the exudates of rice could induce significantly more denitrifying bacteria in rhizosphere, whose denitrifying activities were related to growth stage of rice. At the period with strong growth, the secretion of roots showed clear restriction to the functions of rhizospheric denitrifiers compared to booting stage.


Assuntos
Agricultura , Microbiologia do Solo , Bactérias , Desnitrificação , Oryza , Rizosfera
4.
Huan Jing Ke Xue ; 40(7): 3304-3312, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854732

RESUMO

Phosphorus is an essential life element, which can affect the activities and functions of denitrifiers. Both nirK and nirS genes can code nitrite reductase; however, it remains unclear whether nirK- and nirS-containing denitrifers respond differentially to changes in the availability of phosphorus in paddy soil. In this study, P-deficient paddy soil was used to grow rice plants. Three phosphorus levels established by applying P fertilizer at a rate of 0 mg·kg-1 (CK), 15 mg·kg-1 (P1), and 30 mg·kg-1(P2), respectively. The abundance and community structure of nirK- and nirS- containing denitrifers were determined using quantitative PCR and high-throughput sequencing techniques. Results indicated that nirK- and nirS-containing communities responded differentially to changes in the P levels. The nirS-containing communities are more sensitive to the changes in P in both rhizosphere and bulk soil samples. In addition, the abundance of nirS genes was 2-3 times higher in the P2 treatment than in the CK treatment. Furthermore, the nirS community structure is also clearly differed from the CK treatment. However, P addition only induced partial modification of the community structure and abundance of nirK-containing denitrifiers. Moreover, compared to the bulk soil with each phosphorus level, the nirS community structure in the rhizosphere soil changed significantly; however, only the P2 treatment induced significant increases in the abundance of the nirS gene. In contrast, no significant differences in the abundance and composition of nirK-containing denitrifers were detected between rhizosphere and bulk soils under different phosphorus levels. Collectively, application of phosphate fertilizer in P-deficient paddy soil could significantly increase the abundance of nirK- and nirS-containing denitrifiers, changing their community structures, with nirS-type showing a greater sensitivity than nirK-type denitrifiers. In comparison, the denitrifying communities in the rhizosphere were more sensitive to variable P levels than that in the bulk soil. Compared to bulk soils, rice growth shifted the community structure of nirS- and nirK-containing denitrifiers in rhizosphere soils at each level of P, but failed to induce significant changes in their abundance (except for P2) that could cause a significant increase in nirS abundance. These results could provide a theoretical basis for exploring the effects of fertilization on soil denitrification.


Assuntos
Bactérias/classificação , Desnitrificação , Fósforo/análise , Microbiologia do Solo , Solo/química , Genes Bacterianos , Nitrito Redutases/genética
5.
Huan Jing Ke Xue ; 37(11): 4372-4379, 2016 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964694

RESUMO

Fertilizer applications have important effects on soil microbial abundance and community structure. In this study, total soil microbial DNA and RNA were directly extracted from paddy soils of N0 (control treatment, no nitrogen fertilizer), NPK (balanced fertilization), NPK+LS (balanced fertilization with additional 3.0 t·hm-2 rice straw incorporation) and NPK+HS (balanced fertilization with additional 6.0 t·hm-2 rice straw incorporation) treatments in a long-term fertilization experiment of double rice cropping system in Changsha County, Hunan Province. Soil bacteria community structures were evaluated by analyzing the 16S rRNA gene fragments at DNA and cDNA levels with Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR techniques. Balancing fertilization with chemical fertilizers and rice straw incorporation significantly changed the composition of bulk (DNA-based) and potentially active (mRNA-based) soil bacterial community as shown in T-RFLP profiles, and also reduced the bulk soil microbial diversity, but not the potentially active ones, as compared with the control treatment. The DNA-based abundance of 16S rRNA gene was on average 377 times as many as the m-RNA based population size. Compared to N0,balanced fertilization with rice straw incorporation (NPK+LS and NPK+HS) increased the bulk and active copy numbers of 16S rRNA gene, but not for balanced fertilization (NPK). The abundance and microbial community structure were not significantly different between the NPK+LS and NPK+HS treatments. Redundancy analysis (RDA) showed that soil ammonium was the key environmental factor determining the bulk and active soil microbial community structure among the treatments. In conclusion, the effect of fertilization on soil microbial abundance and community structure could be indicated at both DNA and cDNA levels; the cDNA information could better reflect the adaptability of bacterial community to the environmental stress.


Assuntos
Bactérias/classificação , Fertilizantes , Oryza , Microbiologia do Solo , Agricultura , DNA Complementar/genética , RNA Ribossômico 16S/genética
6.
Mol Neurodegener ; 3: 18, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18957081

RESUMO

BACKGROUND: Chondroitin sulphate proteoglycan (NG2) expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS). They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL) expression. RESULTS: In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation. CONCLUSION: The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa