RESUMO
Here, we develop an optical tweezers-based single-molecule manipulation assay to detect the formation of an R-loop complex in the Cas12a system and characterize its thermodynamic stability. We found that the formation of the R-loop complex induces a two-step unfolding of a DNA hairpin containing the target sequence, the non-target sequence binds loosely to Cas12a and can be easily released from the complex, and the Nuc domain of Cas12a plays key roles in target binding and R-loop formation.
Assuntos
DNA/síntese química , Sistemas CRISPR-Cas/genética , DNA/química , DNA/genética , Pinças Ópticas , TermodinâmicaRESUMO
The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 µm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.