RESUMO
Dengue fever is a frequently occurring infectious disease caused by the Dengue virus, prevalent in tropical and subtropical regions. Chaishi Jiedu Granules (CSJD) is an empirical prescription of the Eighth Affiliated Hospital of Guangzhou Medical University in the treatment of dengue fever, which has been widely used in the treatment of dengue fever, and has shown good efficacy in improving the clinical symptoms of patients. This study aims to explore the molecular mechanism of CSJD in treating dengue fever using network pharmacology, molecular docking techniques, and virtual screening methods. The results showed that luteolin, quercetin and other compounds in CSJD could target important targets related to dengue virus, including STAT3, AKT1, TNF, IL-6, and other key genes, thus playing an antiviral role. Among them, luteolin and wogonin in CSJD also inhibited dengue virus replication and reduced inflammation, and showed good binding force with IL-6 and TNF. Therefore, this study provides an important reference for the development of CSJD as a potential drug for dengue fever treatment and a new perspective for research and development in this field.
Assuntos
Dengue , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Interleucina-6 , Luteolina , Simulação de Acoplamento Molecular , Dengue/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêuticoRESUMO
BACKGROUND: Novel Corona Virus Disease 2019 (COVID-19) is closely associated with cytokines storms. The Chinese medicinal herb Artemisia annua L. (A. annua) has been traditionally used to control many inflammatory diseases, such as malaria and rheumatoid arthritis. We performed network analysis and employed molecular docking and network analysis to elucidate active components or targets and the underlying mechanisms of A. annua for the treatment of COVID-19. METHODS: Active components of A. annua were identified through the TCMSP database according to their oral bioavailability (OB) and drug-likeness (DL). Moreover, target genes associated with COVID-19 were mined from GeneCards, OMIM, and TTD. A compound-target (C-T) network was constructed to predict the relationship of active components with the targets. A Compound-disease-target (C-D-T) network has been built to reveal the direct therapeutic target for COVID-19. Molecular docking, molecular dynamics simulation studies (MD), and MM-GBSA binding free energy calculations were used to the closest molecules and targets between A. annua and COVID-19. RESULTS: In our network, GO, and KEGG analysis indicated that A. annua acted in response to COVID-19 by regulating inflammatory response, proliferation, differentiation, and apoptosis. The molecular docking results manifested excellent results to verify the binding capacity between the hub components and hub targets in COVID-19. MD and MM-GBSA data showed quercetin to be the more effective candidate against the virus by target MAPK1, and kaempferol to be the other more effective candidate against the virus by target TP53. We identified A. annua's potentially active compounds and targets associated with them that act against COVID-19. CONCLUSIONS: These findings suggest that A. annua may prevent and inhibit the inflammatory processes related to COVID-19.
Assuntos
Artemisia annua , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , SARS-CoV-2RESUMO
BACKGROUND: cerebral malaria (CM) is an important complication of malaria with a high mortality rate. Artesunate is recommended as the first-line artemisinin compound treatment for severe malaria. Due to the difficulty of obtaining brain tissue samples clinically, the use of animals to research host responses to CM parasite infections is necessary. Rodent malaria models allow for detailed time series studies of host responses in multiple organs. To date, studies on the transcriptome of severe malaria are only limited to the parasites in the peripheral blood of patients, and there is little data on the transcriptional changes in brain tissue in mice with CM treated with artesunate. METHOD AND RESULT: in this study, fresh tissue samples (three biological replicates per mouse) from the same area of the brain in each animal were collected from the uninfected, Plasmodium berghei ANKA-infected and artesunate-treated C57BL/6 mice, and then transcriptome research was performed by the RNA-seq technique. Differentially expressed genes (DEGs) included Il-21, Tnf, Il-6, Il-1ß, Il-10, Ifng, and Icam-1. Among which, Il-6, Il-10, Tnf-α and Il-1ß were further verified and validated via qRT-PCR and ELISA. This revealed that Il-1ß (p < 0.0001), Il-10 (p < 0.05) and Tnf-α (p < 0.05) were significantly up-regulated in the Pb ANKA-infected versus uninfected group, while Il-1ß (p < 0.0001) and Tnf-α (p < 0.05) were significantly down-regulated after artesunate treatment. All DEGs were closely related to the top 3 artesunate treatment pathways, including the JAK-STAT signaling pathway, apoptosis, and Toll-like receptor signaling pathway. CONCLUSION: the mechanism of improving the prognosis of cerebral malaria by artesunate may not only involve the killing of plasmodium but also the inhibition of a cytokine storm in the host. This study provides new insights into the molecular mechanism by which artesunate improves the prognosis of cerebral malaria.
Assuntos
Antimaláricos , Artemisininas , Malária Cerebral , Animais , Anti-Inflamatórios/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Molécula 1 de Adesão Intercelular/uso terapêutico , Interleucina-10/uso terapêutico , Interleucina-6/uso terapêutico , Chumbo/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/genética , Malária Cerebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Receptores Toll-Like/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêuticoRESUMO
The WHO recommends Artemisinin-based combination therapy (ACTs) as the first-line treatment for malaria. This meta-analysis aims to analyze the effects of artemisinin and its derivatives as well as non-artemisinin drugs on the gametophytes in the host during the treatment of falciparum malaria. Fourteen studies were included in this analysis, and the artemisinin combination drugs involved were: artemether-lumefantrine (AL), artemisinin (AST), artemether-benflumetol (AB), dihydroartemisinin-piperaquine + trimethoprim + primaquine (CV8), amodiaquine + sulfadoxine-pyrimethamine (ASP), pyronaridine-phosphate + dihydroartemisinin (PP-DHA), dihydroartemisinin (DHA), and mefloquine + artesunate (MA), with 1702 patients. The control intervention measures involved the following: sulfadoxine-pyrimethamine (SP), mefloquine (MQ), atovaquone-proguanil (AT-PG), chloroquine + sulfadoxine-pyrimethamine (C-SP), quinine (Q), pyronaridine-phosphate (PP), pyronaridine (PN), and mefloquine + primaquine (MP), with 833 patients. The effect of ACTs was more obvious (OR = 0.37, 95%CI: 0.22-0.62, p < 0.05). In the control group of second malaria attacks, the difference between the two groups was not statistically significant (RD = 1.16, 95%CI: 0.81-1.66, p < 0.05); there was no significant difference in treatment failure during follow-up (RD = -0.01, 95%CI: 0.04-0.03, p < 0.05). There were also very few serious adverse events in both groups. ACTs showed good therapeutic effects in preventing gametocythemia but did not control the recrudescence rate and overall cure, which indicated the effectiveness of the combination of antimalarial drugs. Further research is required to explore which compatibility method is most conducive to the development of clinical malaria control.
RESUMO
BACKGROUND: There are no effective therapies for patients with coronavirus disease-2019 (COVID-19). METHODS: Forty-one patients with confirmed COVID-19 were enrolled in the study and divided into two groups: artemisinin-piperaquine (AP) (n = 23) and control (n = 18). The primary outcome were the time taken to reach undetectable levels of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the percentage of participants with undetectable SARS-CoV-2 on days 7, 10, 14, and 28. The computed tomography (CT) imaging changes within 10 days, corrected QT interval changes, adverse events, and abnormal laboratory parameters were the secondary outcomes. RESULTS: The mean time to reach undetectable viral RNA (mean ± standard deviation) was 10.6 ± 1.1 days (95% confidence interval [CI] 8.4-12.8) for the AP group and 19.3 ± 2.1 days (95% CI 15.1-23.5) for the control group. The percentages of patients with undetectable viral RNA on days 7, 10, 14, 21, and 28 were 26.1%, 43.5%, 78.3%, 100%, and 100%, respectively, in the AP group and 5.6%, 16.7%, 44.4%, 55.6%, and 72.2%, respectively, in the control group. The CT imaging within 10 days post-treatment showed no significant between-group differences (P > 0.05). Both groups had mild adverse events. CONCLUSIONS: In patients with mild-to-moderate COVID-19, the time to reach undetectable SARS-CoV-2 was significantly shorter in the AP group than that in the control group. However, physicians should consider QT interval changes before using AP.
Assuntos
Antivirais/efeitos adversos , Antivirais/uso terapêutico , Artemisininas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Quinolinas/uso terapêutico , Adulto , Artemisininas/efeitos adversos , Quimioterapia Combinada , Feminino , Humanos , Síndrome do QT Longo/induzido quimicamente , Pneumopatias/diagnóstico por imagem , Pneumopatias/tratamento farmacológico , Pneumopatias/virologia , Masculino , Pessoa de Meia-Idade , Quinolinas/efeitos adversos , RNA Viral/sangue , SARS-CoV-2/genética , Carga ViralRESUMO
Objective: The purpose of this meta-analysis of longitudinal studies is to determine the safety and efficacy of artesunate combined with other forms of adjunctive therapies for severe malaria. Methods: Following the PRISMA guidelines, we searched multiple databases with the search terms "artesunate" and "adjunctive therapy" and "severe malaria" in July 2020. If the search showed a randomized controlled trial, the study was included in this meta-analysis. The random-effects model was used to calculate the combined incidence rate and relative risk or risk difference. Results: This meta-analysis included nine longitudinal studies with 724 participants. We found that the mortality rates in the artesunate monotherapy group and the artesunate + adjuvant therapy group are similar (RD = -0.02, 95% confidence interval: -0.06-0.02). The incidence of adverse reactions in the artesunate monotherapy group and the artesunate + adjuvant therapy group was also similar. Conclusion: No significant differences in safety and efficacy were observed between the artesunate monotherapy group and the artesunate + adjuvant therapy group. Higher quality and rigorously designed randomized controlled studies are needed to validate our findings.
RESUMO
OBJECTIVE: The World Health Organization recommends artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria to improve the therapeutic efficacy and limit the choice of drug-resistant parasites. This systematic review and meta-analysis aimed to evaluate the comparative efficacy and safety of artemisinin-piperaquine (AP) in the treatment of uncomplicated malaria relative to other commonly used ACTs. METHODS: As per the PRISMA guidelines, the EMBASE, MEDLINE, the Google Scholar Library, and Cochrane library databases were systematically searched from inception until July 2020 with the following terms: "artemisinin-piperaquine" or "AP." Only randomized controlled trials (RCTs) were included. The competing interventions included dihydroartemisinin-piperaquine (DHA-PPQ), artemether-lumefantrine (AL, Coartem), artesunate-melfloquine (ASAM) and artesunate-amodiaquine (ASAQ, Artekin). Single-arm clinical trial on AP was also assessed. The reported outcomes, including the overall response, cure rate, fever and parasite clearance time, hematology, biochemistry, electrocardiogram (ECG), adverse events, recurrence rate, and sensitivity analyses, were systematically investigated. All data were analyzed using the Review Manager 5.3. RESULTS: A total of seven studies were reviewed, including five RCTs and two single-arm studies. A pooled analysis of 5 RCTs (n = 772) revealed a comparable efficacy on polymerase chain reaction (PCR)-confirmed cure rate between AP and competing interventions in treating uncomplicated malaria. As for the fever and parasite clearance time, due to the lack of complete data in some studies, only 3 studies' data could be used. The patients showed good tolerance to all drugs, and some side-effects (such as headache, anoxia, vomiting, nausea, and dizziness) were reported for every group, but they were self-limited and showed no significant difference. CONCLUSIONS: AP appeared to show similar efficacy and safety, with a simpler mode of administration and easier compliance when compared with other ACTs used in the treatment of uncomplicated malaria. Considering that the potential evolution of drug resistance is of a great concern, additional RCTs with high-quality and more rigorous design are warranted to substantiate the efficacy and safety in different populations and epidemiological regions.