Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 57(13): 5414-5423, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36942728

RESUMO

Due to the growing demands of rare earth elements (REEs) and the vulnerability of REEs to potential supply disruption, there have been increasing interests in recovering REEs from waste streams such as coal fly ash (CFA). Meanwhile, CFA as a large industrial waste stream in the United States (U.S.) poses significant environmental and economic burdens. Recovery of REEs from CFA is a promising solution to the REE scarcity issue and also brings opportunities for CFA management. This study demonstrates a green system for REE recovery from Class F and C CFA that consists of three modules: REE leaching using citrate, REE separation and concentration using oxalate, and zeolite synthesis using secondary wastes from Modules I and II. In Module I, ∼10 and 60% REEs were leached from the Class F and C CFA samples, respectively, using citrate at pH 4. In Module II, the addition of oxalate selectively precipitated and concentrated REEs from the leachate via the formation of weddellite (CaC2O4·2H2O), while other trace metals remained in solution. In Module III, zeolite was synthesized using wastes from Modules I and II. This study is characterized by the successful recovery of REEs and upcycling of secondary wastes, which addresses both REE recovery and CFA management challenges.


Assuntos
Metais Terras Raras , Zeolitas , Cinza de Carvão/química , Carvão Mineral , Citratos , Ácido Cítrico
2.
J Environ Sci (China) ; 125: 691-700, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375950

RESUMO

Oxidation of Mn(II) or As(III) by molecular oxygen is slow at pH < 9, while they can be catalytically oxidized in the presence of oxide minerals and then removed from contaminated water. However, the reaction mechanisms on simultaneous oxidation of Mn(II) and As(III) on oxide mineral surface and their accompanied removal efficiency remain unclear. This study compared Mn(II) oxidation on four common metal oxides (γ-Al2O3, CuO, α-Fe2O3 and ZnO) and investigated the simultaneous oxidation and removal of Mn(II) and As(III) through batch experiments and spectroscopic analyses. Among the tested oxides, CuO and α-Fe2O3 possess greater catalytic activity toward Mn(II) oxidation. Oxidation and removal kinetics of Mn(II) and As(III) on CuO indicate that O2 is the terminal electron acceptor for Mn(II) and As(III) oxidation on CuO, and Mn(II) acts as an electron shuttle to promote As(III) oxidation and removal. The main oxidized product of Mn(II) on CuO is high-valent MnOx species. This newly formed Mn(III) or Mn(IV) phases promote As(III) oxidation on CuO at circumneutral pH 8 and is reduced to Mn(II), which may be then released into solution. This study provides new insights into metal oxide-catalyzed oxidation of pollutants Mn(II) and As(III) and suggests that CuO should be considered as an efficient material to remediate Mn(II) and As(III) contamination.


Assuntos
Cobre , Óxidos , Oxirredução , Óxidos/química , Minerais , Concentração de Íons de Hidrogênio , Compostos de Manganês/química
3.
Environ Sci Technol ; 55(3): 1615-1625, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461291

RESUMO

Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.


Assuntos
Metais Pesados , Esgotos , Anaerobiose , Compostos Férricos , Zinco
4.
J Am Chem Soc ; 142(5): 2506-2513, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913621

RESUMO

Mn oxides are among the most ubiquitous minerals on Earth and play critical roles in numerous elemental cycles in biotic/abiotic loops as the key redox center. Yet, it has long puzzled geochemists why the laboratory synthesis of todorokite, a tunnel-structured Mn oxide, is extremely difficult while it is the dominant form over other tunneled phases in low-temperature natural environments. This study employs a novel electrochemical method to mimic the cyclic redox reactions occurring over long geological time scales in an accelerated manner. The results revealed that the kinetics and electron flux of the cyclic redox reaction are key to the layer-to-tunnel structure transformation of Mn oxides, provided new insights for natural biotic and abiotic redox reactions, and explained the dominance of todorokite in nature.

5.
Environ Sci Technol ; 54(2): 1147-1156, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31790234

RESUMO

Global expectation for sustainability has prompted the transition of practices in wastewater treatment plants toward not only waste management but also energy and nutrient recovery. It has been shown that low-temperature hydrotherm (HT) treatment can enhance downstream biogas production via anaerobic digestion (AD). Yet, because the application of combined HT and AD is still at an early stage, a systematic understanding of the dynamic speciation evolution of important elements is still lacking. This study investigates energy and nutrient recovery from sewage sludge and swine manure via combined HT-AD treatment. Bench-scale investigation was conducted to evaluate biogas production and understand the dynamic evolution of organic carbon (C) and phosphorus (P) speciation. C and P speciations were characterized using complementary chemical and spectroscopic techniques, including 13C nuclear magnetic resonance (NMR) spectroscopy, P X-ray absorption near edge structure (XANES) spectroscopy, and sequential chemical extraction. Results from this study suggest that low-temperature HT pretreatment can achieve enhanced biogas production for sludge compared to the minimal effect on the biogas production from manure. It also provides guidance for P recovery from liquid digestate and solid residue after the AD process.


Assuntos
Esterco , Esgotos , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Nutrientes , Fósforo , Suínos , Eliminação de Resíduos Líquidos
6.
Environ Sci Technol ; 54(13): 8362-8372, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539353

RESUMO

Anaerobic digestion (AD) with hydrothermal (HT) pretreatment is an emerging technology for enhanced resource recovery from sewage sludge. This study investigates the speciation of Fe, P, and S during sequential HT-AD treatment of sewage sludge using sequential chemical extraction, X-ray diffraction, and X-ray absorption spectroscopy. Results suggest strong correlations between Fe and P species as well as Fe and S species, affecting the solubility and bioavailability of each other. For instance, much vivianite formed in the hydrochars after HT treatment at low temperature, while more strengite precipitated at higher HT temperature. During the subsequent AD process, microbial reduction of strengite and other Fe(III) species led to the formation of more vivianite, with concurrent P release into the solution and adsorption onto other minerals. HT pretreatment of sewage sludge had a weak effect on the sulfidation of Fe during the AD process. This work has important implications for understanding the nutrient speciation and availability in sludge-derived hydrochars and AD solids. It also provides fundamental knowledge for the selection and optimization of HT pretreatment conditions for enhanced resource recovery through sequential HT-AD process.


Assuntos
Fósforo , Esgotos , Anaerobiose , Ferro , Enxofre , Eliminação de Resíduos Líquidos
7.
J Am Chem Soc ; 141(16): 6680-6689, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30932488

RESUMO

While sodium-ion batteries (SIBs) hold great promise for large-scale electric energy storage and low speed electric vehicles, the poor capacity retention of the cathode is one of the bottlenecks in the development of SIBs. Following a strategy of using lithium doping in the transition-metal layer to stabilize the desodiated structure, we have designed and successfully synthesized a novel layered oxide cathode P2-Na0.66Li0.18Fe0.12Mn0.7O2, which demonstrated a high  capacity of 190 mAh g-1 and a remarkably high capacity retention of ∼87% after 80 cycles within a wide voltage range of 1.5-4.5 V. The outstanding stability is attributed to the reversible migration of lithium during cycling and the elimination of the detrimental P2-O2 phase transition, revealed by ex situ and in situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy.

8.
Environ Microbiol ; 21(7): 2415-2425, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972877

RESUMO

Polyphosphates and phosphomonoesters are dominant components of marine dissolved organic phosphorus (DOP). Collectively, DOP represents an important nutritional phosphorus (P) source for phytoplankton growth in the ocean, but the contribution of specific DOP sources to microbial community P demand is not fully understood. In a prior study, it was reported that inorganic polyphosphate was not bioavailable to the model diatoms Thalassiosira weissflogii and Thalassiosira pseudonana. However, in this study, we show that the previous finding was a misinterpretation based on a technical artefact of media preparation and that inorganic polyphosphate is actually widely bioavailable to Thalassiosira spp. In fact, orthophosphate, inorganic tripolyphosphate (3polyP), adenosine triphosphate (ATP) and adenosine monophosphate supported equivalent growth rates and final growth yields within each of four strains of Thalassiosira spp. However, enzyme activity assays revealed in all cultures that cell-associated hydrolysis rates of 3polyP were typically more than ~10-fold higher than degradation of ATP and the model phosphomonoester compound 4-methylumbelliferyl phosphate. These results build on prior work, which showed the preferential utilization of polyphosphates in the cell-free exudates of Thalassiosira spp., and suggest that inorganic polyphosphates may be a key bioavailable source of P for marine phytoplankton.


Assuntos
Diatomáceas/metabolismo , Fósforo/metabolismo , Polifosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Fitoplâncton/metabolismo
9.
Environ Sci Technol ; 53(9): 5369-5377, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30912650

RESUMO

In recent years, recovery of rare earth elements (REEs) from coal fly ashes (CFAs) has been considered as a promising resource recovery option. Yet, quantitative information on REE speciation in CFAs and its correlation with REE extractability are not well established. This study systematically investigated the REE speciation-extractability relationship in four representative CFA samples by employing multiple analytical and spectroscopic techniques across the micro to bulk scale and in combination with thermodynamic calculations. A range of REE-bearing phases are identified, such as REE oxides, REE phosphates, apatite, zircon, and REE-bearing glass phase. REEs can occur as discrete particles, as particles encapsulated in the glass phase, or distribute throughout the glass phase. Although certain discrepancies exist on the REE speciation quantified by X-ray adsorption spectroscopy and acid leaching due to intrinsic limitations of each method, both approaches show significant fractions of REE oxides, REE phosphates, apatite, and REE-bearing Fe oxides. This study contributes to an in-depth understanding of the REE speciation-distribution-extractability relationship in CFAs and can help identify uncertainties associated with the quantification of REE speciation. It also provides a general methodology for future studies on REE speciation in complex environmental samples and a knowledge basis for the development of effective REE recovery techniques.


Assuntos
Cinza de Carvão , Metais Terras Raras , Adsorção , Carvão Mineral , Vidro
10.
Environ Sci Technol ; 53(16): 9542-9552, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313918

RESUMO

The geochemical behaviors of phosphate-containing species at mineral-water interfaces are of fundamental importance for controlling phosphorus mobility, fate, and bioavailability. This study investigates the sorption and hydrolysis of polyphosphate (a group of important long-chained phosphate molecules) on aluminum oxides in the presence of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, and Zn2+) at pH 6-8. γ-Al2O3 with three particle sizes (5, 35, and 70 nm) was used as an analogue of natural aluminum oxides to investigate the particle size effect. All metal cations enhanced polyphosphate hydrolysis at different levels, with Ca2+ showing the most significant enhancement, and the difference in the enhancement might be due to the intrinsic affinity of metal cations to polyphosphate. In the presence of Ca2+, the hydrolysis rate decreased with increasing mineral particle size. Solid-state 31P nuclear magnetic resonance spectroscopy (NMR) revealed the main surface P species to be amorphous calcium phosphate precipitates, phosphate groups in polyphosphate that formed direct bonds with the mineral surface as inner-sphere complexes, and phosphate groups in polyphosphate that were not directly bonded to the mineral surfaces. Our results reveal the critical roles of mineral-water interface processes and divalent metal cations on controlling polyphosphate speciation and transformation and phosphorus cycling.


Assuntos
Óxido de Alumínio , Polifosfatos , Adsorção , Alumínio , Hidrólise , Metais
11.
Environ Sci Technol ; 52(22): 13202-13211, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30358985

RESUMO

The kinetics and mechanism of thiol oxidation by Mn oxides undergoing dynamic structural transformation under environmentally relevant conditions remain poorly understood. In this study, thiol/disulfide pair concentrations were simultaneously determined in situ using voltammetric microelectrodes during the interaction of four common thiols (cysteine, homocysteine, cysteamine, and glutathione) with fresh and aged δ-MnO2 at pH 7.0. The reaction kinetics was first order with respect to thiol and zero order with respect to Mn oxides. A transient intermediate sulfur surface species observed during the reaction provides evidence for a mechanism involving two successive one-electron transfer steps. The reaction kinetics of fresh and aged δ-MnO2 was investigated with cysteine and compared to that of manganite, a Mn(III) oxyhydroxide phase. The reactivity of aged δ-MnO2 decreased as a result of structural transformation to cryptomelane but remained higher than that of manganite, suggesting the potential roles of transient Mn(III) surface intermediate in promoting the reduction of Mn(IV) in δ-MnO2 and cryptomelane (compared to Mn(III) in manganite). This study demonstrates the importance of correlating Mn oxide mineral structure and redox reactivity and extends the potential for thiols commonly found in sedimentary environments to be utilized as electron shuttles during dissimilatory Mn reduction.


Assuntos
Compostos de Manganês , Óxidos , Transporte de Elétrons , Cinética , Oxirredução
12.
Environ Sci Technol ; 52(3): 1183-1190, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29359927

RESUMO

Polyphosphates are a group of phosphorus (P) containing molecules that are produced by a wide range of microorganisms and human activities. Although polyphosphates are ubiquitous in aquatic environments and are of environmental significance, little is known about their transformation and cycling. This study characterized the polyphopshate-hydrolysis mechanisms of several representative phosphatase enzymes and evaluated the effects of polyphosphate chain length, light condition, and calcium (Ca2+). 31P nuclear magnetic resonance (NMR) spectroscopy was used to monitor the dynamic changes of P molecular configuration during polyphosphate hydrolysis and suggested a terminal-only degradation pathway by the enzymes. Such mechanism enabled the quantification of the hydrolysis rates by measuring orthophosphate production over time. At the same initial concentration of polyphosphate molecules, the hydrolysis rates were independent of chain length. The hydrolysis of polyphosphate was also unaffected by light condition, but was reduced by the presence of Ca2+. The released orthophosphates formed Ca-phosphate precipitates in the presence of Ca2+, likely in amorphous phases. Results from this study lay the foundation for better understanding the chemical processes governing polyphosphate transport and transformation in various environmental settings.


Assuntos
Monoéster Fosfórico Hidrolases , Polifosfatos , Hidrólise , Espectroscopia de Ressonância Magnética , Fósforo
13.
Environ Sci Technol ; 52(5): 3016-3026, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29431994

RESUMO

Phosphorus (P) in animal manures is an important P pool for P recycling and reclamation. In recent years, thermochemical techniques have gained much interests for effective waste treatment and P recycling. This study comparatively characterized the transformation of P during two representative thermochemical treatments (pyrolysis and hydrothermal carbonization, HTC) of four animal manures (swine, chicken, beef, and dairy manures) by combining nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, and sequential extraction. For both pyrolysis and HTC treatments, degradation of organic phosphate and crystallization of Ca phosphate minerals were observed and were highly dependent on treatment temperature. Extensive crystallization of Ca phosphate minerals occurred at temperatures above 450 °C during pyrolysis, compared to the lower temperature (175 and 225 °C) requirements during HTC. As a result, P was immobilized in the hydrochars and high temperature pyrochars, and was extracted primarily by HCl. Because Ca is the dominating P-complexing cation in all four manures, all manures showed similar P speciation and transformation behaviors during the treatments. Results from this work provided deeper insights into the thermochemical processes occurred during the pyrolysis and HTC treatments of biological wastes, as well as guidance for P reclamation and recycling from these wastes.


Assuntos
Esterco , Fósforo , Animais , Bovinos , Reciclagem , Suínos , Temperatura , Espectroscopia por Absorção de Raios X
14.
Environ Sci Technol ; 51(6): 3250-3259, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28244747

RESUMO

Iron oxides are important structural and biogeochemical components of soils that can be strongly altered by redox-driven processes. This study examined the influence of temporal oxygen variations on Fe speciation in soils from the Luquillo Critical Zone Observatory (Puerto Rico). We incubated soils under cycles of oxic-anoxic conditions (τoxic:τanoxic = 1:6) at three frequencies with and without phosphate addition. Fe(II) production, P availability, and Fe mineral composition were monitored using batch analytical and spectroscopic techniques. The rate of soil Fe(II) production increased from ∼3 to >45 mmol Fe(II) kg-1 d-1 over the experiment with a concomitant increase of an Fe(II) concentration plateau within each anoxic period. The apparent maximum in Fe(II) produced is similar in all treatments, but was hastened by P-amendment. Numerical modeling suggests the Fe(II) dynamics can be explained by the formation of a rapidly reducible Fe(III) phases derived from the progressive dissolution and re-oxidation of native Fe(III) oxides accompanied by minor increases in Fe reducer populations. The shift in Fe(III) reactivity is evident from Fe-reducibility assays using Shewanella sp., however was undetectable by chemical extractions, Mössbauer or X-ray Absorption spectroscopies. More broadly, our findings suggest Fe reduction rates are strongly coupled to redox dynamics of the recent past, and that frequent shifts in redox conditions can prime a soil for rapid Fe-reduction.


Assuntos
Compostos Férricos/química , Solo/química , Florestas , Ferro/química , Oxirredução
15.
Environ Sci Technol ; 51(18): 10284-10298, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28876917

RESUMO

Phosphorus (P) is an essential nutrient for all organisms, thus playing unique and critical roles at the food-energy-water nexus. Most P utilized by human activities eventually converges into various solid biowastes, such as crop biomass, animal manures, and sewage sludges. Therefore, integration of efficient P recovery practices into solid biowaste management will not only significantly reduce the dependence on limited geological P resources but also reduce P runoff and related water contamination issues associated with traditional waste management strategies. This study reviews the applications of (hydro)thermal techniques for the treatment of solid biowastes, which can greatly facilitate P recovery in addition to waste volume reduction, decontamination, and energy recovery. Research showed that P speciation (including molecular moiety, complexation state, and mineralogy) can experience significant changes during (hydro)thermal treatments, and are impacted by treatment techniques and conditions. Changes in P speciation and overall properties of the products can alter the mobility and bioavailability of P, and subsequent P reclamation and recycling efficiency of the treatment products. This review summarizes recent progresses in this direction, identifies the challenges and knowledge gaps, and provides a foundation for future research efforts targeting at sustainable management of nutrient-rich biowastes.


Assuntos
Fósforo , Reciclagem , Esgotos , Agricultura , Animais , Humanos , Esterco , Gerenciamento de Resíduos
16.
Environ Sci Technol ; 51(6): 3223-3232, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28218537

RESUMO

The role of microbial activities on the transformation of chromium (Cr) remediation products has generally been overlooked. This study investigated the stability of Cr(III)-Fe(III)-(oxy)hydroxides, common Cr(VI) remediation products, with a range of compositions in the presence of common microbial exudates, siderophores and small organic acids. In the presence of a representative siderophore, desferrioxamine B (DFOB), iron (Fe) was released at higher rates and to greater extents relative to Cr from all solid phases. The presence of oxalate alone caused the release of Cr, but not of Fe, from all solid phases. In the presence of both DFOB and oxalate, oxalate acted synergistically with DFOB to increase the Fe, but not the Cr, release rate. Upon reaction with DFOB or DFOB + oxalate, the remaining solids became enriched in Cr relative to Fe. Such incongruent dissolution led to solid phases with different compositions and increased solubility relative to the initial solid phases. Thus, the presence of microbial exudates can promote the release of Cr(III) from remediation products via both ligand complexation and increased solid solubility. Understanding the potential reaction kinetics and pathways of Cr(VI) remediation products in the presence of microbial activities is necessary to assess their long-term stability.


Assuntos
Cromo , Sideróforos , Compostos Férricos , Hidróxidos , Ferro , Oxirredução , Solubilidade
17.
Environ Sci Technol ; 50(5): 2389-95, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836650

RESUMO

As an important component of soil organic matter (SOM), the transformation of pyrogenic carbon plays a critical role in the biogeochemical cycles of carbon and other redox-active elements such as iron (Fe). Herein, we studied the influences of wheat straw-derived biochars on the microbial reduction of 100 mM of hematite by the dissimilatory metal reducing bacteria Shewanella oneidensis MR-1 under anoxic conditions. The long-term microbial reduction extent and initial reduction rate of hematite were accelerated by more than 2-fold in the presence of 10 mg L(-1) biochar. Soluble leachate from 10 mg L(-1) biochar enhanced Fe(III) reduction to a similar degree. Microbially prereduced biochar leachate abiotically reduced hematite, consistent with the apparent electron shuttling capacity of biochar leachate. Electron paramagnetic resonance (EPR) analysis suggested that biochar leachate-associated semiquinone functional groups were likely involved in the redox reactions. In addition to electron shuttling effects, biochar particles sorbed 0.5-1.5 mM biogenic Fe(II) and thereby increased the long-term extent of hematite reduction by 1.4-1.7 fold. Our results suggest that Fe redox cycling may be strongly impacted by pyrogenic carbon in soils with relatively high content of indigenous pyrogenic carbon or substantial application of biochar.


Assuntos
Carvão Vegetal/metabolismo , Compostos Férricos/metabolismo , Shewanella/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Meio Ambiente , Ferro/química , Oxirredução , Solubilidade , Temperatura
18.
Langmuir ; 31(8): 2366-71, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25656732

RESUMO

Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) µm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

19.
Environ Sci Technol ; 49(24): 14466-74, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26633236

RESUMO

(Hydro)thermal treatments of sewage sludge from wastewater treatment process can significantly reduce waste volume and transform sludge into valuable products such as pyrochar and hydrochar. Given the global concern with phosphorus (P) resource depletion, P recycling/reclamation from or direct soil application of the derived chars can be potential P recycling practices. In order to evaluate P recyclability as well as the selection and optimization of treatment techniques, it is critical to understand the effects of different treatment techniques and conditions on P speciation and distribution. In the present study, we systematically characterized P speciation in chars derived from thermal (i.e., pyrolysis) and hydrothermal treatments of municipal sewage sludge using complementary chemical extraction and nuclear magnetic resonance (NMR) spectroscopy methods. P species in the raw activated sludge was dominated by orthophosphate and long-chain polyphosphates, whereas increased amounts of pyrophosphate and short-chain polyphosphates formed after pyrolysis at 250-600 °C. In contrast, hydrothermal treatments resulted in the production of only inorganic orthophosphate in the hydrochar. In addition to the change of molecular speciation, thermal treatments also altered the physical state and extractability of different P species in the pyrochars from pyrolysis, with both total P and polyphosphate being less extractable with increasing pyrolysis temperature. Results from this study suggest that P speciation and availability in sludge-derived chars are tunable by varying treatment techniques and conditions, and provide fundamental knowledge basis for the design and selection of waste management strategies for better nutrient (re)cycling and reclamation.


Assuntos
Fósforo/análise , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fracionamento Químico , Espectroscopia de Ressonância Magnética , Fósforo/química , Polifosfatos/química , Reciclagem , Temperatura , Águas Residuárias/química
20.
Environ Sci Technol ; 48(24): 14326-34, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25383895

RESUMO

Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 µM U(VI) at concentrations ranging from 0 to 640 µM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 µM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.


Assuntos
Arseniatos/química , Compostos Ferrosos/química , Urânio/química , Arsênio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa