Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
2.
Mol Imaging Biol ; 26(2): 240-252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151582

RESUMO

PURPOSE: The degree and dynamic progression of neuroinflammation after traumatic spinal cord injuries (SCI) are crucial determinants of the severity of injury and potential for recovery. We used Positron Emission Tomography (PET) to monitor neuroinflammation longitudinally, correlating it with Chemical Exchange Saturation Transfer (CEST) Magnetic Resonance Imaging (MRI) and behavior in contusion-injured rats. These studies help validate CEST metrics and confirm how imaging may be used to evaluate the efficacy of therapies and understand their mechanisms of action. PROCEDURES: 12 SCI and 4 sham surgery rats were subjected to CEST MRI and PET-Translocator Protein (TSPO) scans for 8 weeks following injury. Z-spectra from the SCI were analyzed using a 5-Lorentzian pool model for fitting. Weekly motor and somatosensory behavior were correlated with imaging metrics, which were validated through post-mortem histological and immuo-staining using ionized calcium-binding adaptor protein-1 (iba-1, microglia) and glial fibrillary acidic protein (GFAP, astrocytes). RESULTS: PET-TSPO showed widespread inflammation and post-mortem histology confirmed the presence of activated microglia. Changes in CEST and nuclear Overhauser Effect (NOE) peaks at 3.5 ppm and -1.6 ppm respectively were largest within the first week after injury and more pronounced in rostral versus caudal segments. These temporal indices of neuroinflammation corresponded to the recovery of locomotor behaviors and somatic sensation in rats with moderate contusion injury. The results confirm that CEST MRI metrics are sensitive indices of states of neuroinflammation within injured spinal cords. CONCLUSIONS: The detection of dynamic spatiotemporal features of neuroinflammation progression underscores the importance of considering their timings and locations for neuroprotective and anti-inflammatory therapies. The availability of noninvasive MRI indices of neuroinflammation may facilitate clinical trials aimed at treatments that promote recovery after SCI.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Inflamação/metabolismo , Proteínas de Transporte/metabolismo
3.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618956

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Rim , Neoplasias Renais/genética , Microambiente Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/genética
4.
Brain Imaging Behav ; 12(1): 87-95, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108946

RESUMO

Adjuvant chemotherapy has been used for decades to treat cancer, and it is well known that disruptions in cognitive function and memory are common chemotherapeutic adverse effects. However, studies using neuropsychological metrics have also reported group differences in cognitive function and memory before or without chemotherapy, suggesting that complex factors obscure the true etiology of chemotherapy-induced cognitive dysfunction (CICD) in humans. Therefore, to better understand possible mechanisms of CICD, we explored the effects of CICD in rats through cognition testing using novel object recognition (NOR) and contextual fear conditioning (CFC), and through metabolic neuroimaging via [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Cancer-naïve, female Sprague-Dawley rats were administered either saline (1 mL/kg) or doxorubicin (DOX) (1 mg/kg in a volume of 1 mL/kg) weekly for five weeks (total dose = 5 mg/kg), and underwent cognition testing and PET imaging immediately following the treatment regime and 30 days post treatment. We did not observe significant differences with CFC testing post-treatment for either group. However, the chemotherapy group exhibited significantly decreased performance in the NOR test and decreased 18F-FDG uptake only in the prefrontal cortex 30 days post-treatment. These results suggest that long-term impairment within the prefrontal cortex is a plausible mechanism of CICD in this study, suggesting DOX-induced toxicity in the prefrontal cortex at the dose used.


Assuntos
Antineoplásicos/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/diagnóstico por imagem , Doxorrubicina/toxicidade , Animais , Mapeamento Encefálico , Disfunção Cognitiva/psicologia , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Feminino , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Neuroimagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Tomografia Computadorizada por Raios X
5.
Mol Imaging Biol ; 16(6): 813-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24845529

RESUMO

PURPOSE: Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [(18)F]VUIIS1008, in healthy mice and glioma-bearing rats. PROCEDURES: Dynamic PET data were acquired simultaneously with [(18)F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS: [(18)F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [(18)F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [(18)F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [(18)F]DPA-714. CONCLUSIONS: The PET ligand [(18)F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Transporte/metabolismo , Radioisótopos de Flúor , Glioma/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Pirazóis , Pirimidinas , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Radioisótopos de Flúor/farmacocinética , Glioma/diagnóstico por imagem , Glioma/patologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa