RESUMO
The preparation methodology and properties of electroconductive, electrospun mats composed of copolyamide 6,10 and Ti3C2Tx are described in this paper. Mats of several compositions were prepared from a solution of n-propanol. The obtained electrospun mats were then tested as piezoresistive sensors. The relative resistance (AR) of the sensor increased with an increase in the Ti3C2Tx content, and materials with relatively higher electrical conductivity displayed noticeably higher sensitivity to applied pressure. The pressure-induced changes in resistivity increased with an increment in the applied force.
RESUMO
This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel oil/water mixtures in the concentration range from 75 ppm to 200 ppm. Plasma treatment significantly increased the wettability of the LDPE powder, which resulted in enhanced sorption capability of the oil component from emulsions in comparison to untreated powder. Emulsions formed from distilled water and commercial diesel oil (DO) with concentrations below 200 ppm were used as a model of oily polluted water. The emulsions were prepared using ultrasonication without surfactant. The droplet size was directly proportional to sonication time and ranged from 135 nm to 185 nm. A sonication time of 20 min was found to be sufficient to prepare stable emulsions with an average droplet size of approximately 150 nm. The sorption tests were realized in a batch system. The effect of contact time and initial oil concentrations were studied under standard atmospheric conditions at a stirring speed of 340 rpm with an adsorbent particle size of 500 microns. The efficiency of the plasma-treated LDPE powder in oil removal was found to be dependent on the initial oil concentration. It decreased from 96.7% to 79.5% as the initial oil concentration increased from 75 ppm to 200 ppm. The amount of adsorbed oil increased with increasing contact time. The fastest adsorption was observed during the first 30 min of treatment. The adsorption kinetics for emulsified oils onto sorbent followed a pseudo-second-order kinetic model.
RESUMO
Two-dimensional layered nanomaterial Ti3C2TX (a member of the MXene family) was used to immobilise enzyme sarcosine oxidase to fabricate a nanostructured biosensor. The device was applied for detection of sarcosine, a potential prostate cancer biomarker, in urine for the first time. The morphology and structures of MXene have been characterised by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical measurements, SEM and AFM analysis revealed that MXene interfaced with chitosan is an excellent support for enzyme immobilisation to fabricate a sensitive biosensor exhibiting a low detection limit of 18 nM and a linear range up to 7.8 µM. The proposed biosensing method also provides a short response time of 2 s and high recovery index of 102.6% for detection of sarcosine spiked into urine sample in a clinically relevant range.
RESUMO
The electrically conductive, transparent, and flexible self-standing thin nanocomposite films based on copolyamide matrix (coPA:Vestamelt X1010) modified with 2D Ti3C2Tx (MXene) nanosheets were prepared by casting and their electrical, mechanical and optical properties and then, were investigated. The percolation threshold of the MXene filler within the coPA matrix was found to be 0.05 vol. %, and the highest determined electrical conductivity was 1.4 × 10-2 S·cm-1 for the composite filled with 5 wt. % (1.8 vol. %) of MXene. The electrical conductivity of the as-prepared MXene was 9.1 S·cm-1, and the electrical conductivity of the MAX phase (the precursor for MXene preparation) was 172 S·cm-1. The transparency of the prepared composite films exceeded 75%, even for samples containing 5 wt. % of MXene, as confirmed by UV spectroscopy. The dynamic mechanical analysis confirmed the improved mechanical properties, such as the storage modulus, which improved with the increasing MXene content. Moreover, all the composite films were very flexible and did not break under repeated twisting. The combination of the relatively high electrical conductivity of the composites filled with low filler content, an appropriate transparency, and good mechanical properties make these materials promising for applications in flexible electronics.
RESUMO
Novel 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers have been successfully fabricated by an electrospinning technique. The high aspect ratio, hydrophilic surfaces, and metallic conductivity of delaminated MXene nanosheet render it promising nanofiller for high performance nanocomposites. Cellulose nanocrystals (CNC) were used to improve the mechanical properties of the nanofibers. The obtained electrospun nanofibers had diameter from 174 to 194 nm depending on ratio between PVA, CNC and MXene. Dynamic mechanical analysis demonstrated an increase in the elastic modulus from 392 MPa for neat PVA fibers to 855 MPa for fibers containing CNC and MXene at 25°C. Moreover, PVA nanofibers containing 0.14 wt. % Ti3C2Tx exhibited dc conductivity of 0.8 mS/cm conductivity which is superior compared to similar composites prepared using methods other than electrospinning. Improved mechanical and electrical characteristics of the Ti3C2Tx /CNC/PVA composites make them viable materials for high performance energy applications.