Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 10089-10096, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890167

RESUMO

An in-depth understanding of the structure-property relationships in semiconductor mixed-halide perovskites is critical for their potential applications in various light-absorbing and light-emitting optoelectronic devices. Here we show that during the crystal growth of mixed-halide CsPbBr1.2I1.8 nanocrystals (NCs), abundant Ruddlesden-Popper (RP) plane stacking faults are formed to release the lattice strain. These RP planes hinder the exchange of halide species across them, resulting in the presence of multiple nanodomains with discrete mixed-halide compositions inside a single CsPbBr1.2I1.8 NC. Photoluminescence peaks from these pre-segregated nanodomains, whose correlated intensity and wavelength variations signify the interactions of coupled quantum dots within a single CsPbBr1.2I1.8 NC, can be simultaneously resolved at cryogenic temperature. Our findings thus point to a fascinating scenario in which a semiconductor nanostructure can be further divided into multiple quantum-light sources, the interaction and manipulation of which will promote novel photophysics to facilitate their potential applications in quantum information technologies.

2.
Small ; 19(12): e2206787, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592419

RESUMO

Organic A'-site ligand structure plays a crucial role in the crystal growth of 2D perovskites, but the underlying mechanism has not been adequately understood. This problem is tackled by studying the influence of two isomeric A'-site ligands, linear-shaped n-butylammonium (n-BA+ ) and branched iso-butylammonium (iso-BA+ ), on 2D perovskites from precursor to device, with a combination of in situ grazing-incidence wide-angle X-ray scattering and density functional theory. It is found that branched iso-BA+ , due to the lower aggregation enthalpies, tends to form large-size clusters in the precursor solution, which can act as pre-nucleation sites to expedite the crystallization of vertically oriented 2D perovskites. Furthermore, iso-BA+ is less likely to be incorporated into the MAPbI3 lattice than n-BA+ , suppressing the formation of unwanted multi-oriented perovskites. These findings well explain the better device performance of 2D perovskite solar cells based on iso-BA+ and elucidate the fundamental mechanism of ligand structural impact on 2D perovskite crystallization.

3.
Nano Lett ; 22(2): 636-643, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019656

RESUMO

The three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY). Herein we present all-inorganic germanium salts, GeX4 (X = Cl, Br, I), serving as robust and less hazardous alternatives that are capable of ensuring improved material properties for both Pb-based and Pb-free PNCs. Importantly, unlike most of the other inorganic halide sources, the GeX4 compound does not deliver the Ge element into the final compositions, whereas the PLQY and phase stability of the resulting nanocrystals are significantly improved. Theoretical calculations suggest that Ge halide precursors provide favorable conditions in both dielectric environment and thermodynamics, which jointly contribute to the formation of size-confined defect-suppressed nanoparticles.

4.
J Chem Inf Model ; 62(24): 6423-6435, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576452

RESUMO

Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MAxFA1-xPb(BryI1-y)3 for variable composition (∀x, y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(BrxI1-x)3 perovskite (Balestra et al. J. Mater. Chem. A. 2020, DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions.

5.
J Chem Inf Model ; 61(9): 4415-4424, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34414764

RESUMO

In recent years, metal halide perovskites (MHPs) for optoelectronic applications have attracted the attention of the scientific community due to their outstanding performance. The fundamental understanding of their physicochemical properties is essential for improving their efficiency and stability. Atomistic and molecular simulations have played an essential role in the description of the optoelectronic properties and dynamical behavior of MHPs, respectively. However, the complex interplay of the dynamical and optoelectronic properties in MHPs requires the simultaneous modeling of electrons and ions in relatively large systems, which entails a high computational cost, sometimes not affordable by the standard quantum mechanics methods, such as density functional theory (DFT). Here, we explore the suitability of the recently developed density functional tight binding method, GFN1-xTB, for simulating MHPs with the aim of exploring an efficient alternative to DFT. The performance of GFN1-xTB for computing structural, vibrational, and optoelectronic properties of several MHPs is benchmarked against experiments and DFT calculations. In general, this method produces accurate predictions for many of the properties of the studied MHPs, which are comparable to DFT and experiments. We also identify further challenges in the computation of specific geometries and chemical compositions. Nevertheless, we believe that the tunability of GFN1-xTB offers opportunities to resolve these issues and we propose specific strategies for the further refinement of the parameters, which will turn this method into a powerful computational tool for the study of MHPs and beyond.


Assuntos
Compostos de Cálcio , Óxidos , Eletrônica , Titânio
6.
Phys Chem Chem Phys ; 23(25): 13878-13884, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34114582

RESUMO

An atomistic description of tin deposition on ruthenium and its effect on blistering damage is of great interest in extreme ultraviolet (EUV) lithography. In EUV machines, tin debris from the EUV-emitting tin plasma may be deposited on the mirrors in the optical path. Tin facilitates the formation of hydrogen-filled blisters under the ruthenium top layer of the multi-layer mirrors. We have used Density Functional Theory (DFT) to show that tin deposition on a clean ruthenium surface exhibits a film-plus-islands (Stranski-Krastanov) growth mode, with the first atomic layer bonding strongly to the substrate. We find that a single tin layer allows hydrogen to reach the ruthenium surface and subsurface more easily than on clean ruthenium, but hydrogen penetration through the tin film becomes progressively more difficult when more layers are added. The results indicate that hydrogen penetration and blistering occur when only a thin layer of tin is present.

7.
Phys Chem Chem Phys ; 23(9): 5199-5206, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33624649

RESUMO

2.25Cr1Mo0.25V is a state-of the-art alloy used in the fabrication of modern hydrogenation reactors. Compared to the conventional 2.25Cr1Mo steel, the 2.25Cr1Mo0.25V steel exhibits a better performance, in particular higher hydrogen damage resistance. Previous experimental studies indicate that carbides in steels may be responsible for the hydrogen-induced damage. To gain a better understanding of the mechanism of such damage, it is essential to study hydrogen uptake in metal carbides. In this study, Density Functional Theory (DFT) is used to investigate the stability of chromium, molybdenum and vanadium carbides (CrxCy, MoxCy and VxCy) in the 2.25Cr1Mo0.25V steel. The stability of their corresponding interstitial hydrides was also explored. The results showed that Cr7C3, Mo2C and V6C5 are the most stable carbides in their respective metal-carbon (Cr-C, Mo-C and V-C) binary systems. Specifically, V6C5 shows the strongest hydrogen absorption ability because of its strong V-H and C-H ionic bonds. On the other hand, V4C3, whose presence in the alloy was established in experimental studies, is predicted to be stable as well, along with V6C5. Our findings indicate that the hydrogen absorption ability of V4C3 is higher than that of V6C5. Additionally, the charge and chemical bonding analyses reveal that the stability of the metal carbide hydrides strongly depends on the electronegativity of the metal. Due to the high electronegativity of V, vanadium carbides form the strongest ionic bonds with hydrogen, compared to those of Mo and Cr. The results from this study suggest that the unique capacity of accommodating hydrogen in the vanadium carbides plays an important role in improved hydrogen damage resistance of the 2.25Cr1Mo0.25V alloy in hydrogenation reactors.

8.
Phys Chem Chem Phys ; 22(15): 7935-7941, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32232240

RESUMO

Hydrogen permeation into mirrors used in extreme ultraviolet lithography results in the formation of blisters, which are detrimental to reflectivity. An understanding of the mechanism via which hydrogen ends up at the interface between the top ruthenium layer and the underlying bilayers is necessary to mitigate the blistering damage. In this study, we use density functional theory to examine the ways in which hydrogen, having entered the near-surface interstitial voids, can migrate further into the metal or to its surface. We show that with hydrogen and tin adsorbed on the ruthenium surface, diffusion to the surface is blocked for interstitial hydrogen in the metal, making diffusion further into the metal more likely than out-diffusion. The dependence on surface conditions matches and confirms similar findings on hydrogen permeation into metals. This suggests control and modification of surface conditions as a way to influence hydrogen retention and blistering.

9.
Phys Chem Chem Phys ; 22(34): 19178-19187, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812586

RESUMO

Strontium titanate, SrTiO3, with the perovskite ABO3 structure is known as one of the most efficient photocatalyst materials for the overall water splitting reaction. Doping with appropriate metal cations at the A site or at the B site substantially increases the quantum yield to split water into H2 and O2. The site occupied by the guest dopant in the SrTiO3 host thus plays a key role in dictating the water splitting activity. However, little is known about the detailed structure of the dopant site in the host lattice. In this study, the local structure of In3+ cations, which were shown to improve the water splitting activity of SrTiO3, is investigated with X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations. The In3+ cations exclusively substitute for Ti4+ cations at the B site to form InO6 octahedra. Further optical experiments using UV-Vis diffuse reflectance spectroscopy and DFT calculations of the density of states indicate that the substitution of In3+ for Ti4+ does not alter the band structure and bandgap energy (remaining at 3.2 eV). The mechanism underlying the increased water splitting activity is discussed in relation to occupation of the B site by In3+ cations.

10.
Angew Chem Int Ed Engl ; 59(22): 8421-8424, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32134170

RESUMO

Phase-stable CsSnx Pb1-x I3 perovskite quantum dots (QDs) hold great promise for optoelectronic applications owing to their strong response in the near-infrared region. Unfortunately, optimal utilization of their potential is limited by the severe photoluminescence (PL) quenching, leading to extremely low quantum yields (QYs) of approximately 0.3 %. The ultra-low sodium (Na) doping presented herein is found to be effective in improving PL QYs of these alloyed QDs without alerting their favourable electronic structure. X-ray photoelectron spectroscopy (XPS) studies suggest the formation of a stronger chemical interaction between I- and Sn2+ ions upon Na doping, which potentially helps to stabilize Sn2+ and suppresses the formation of I vacancy defects. The optimized PL QY of the Na-doped QDs reaches up to around 28 %, almost two orders of magnitude enhancement compared with the pristine one.

11.
Phys Chem Chem Phys ; 21(18): 9531-9537, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020959

RESUMO

The structural sensitivity of silver orthophosphate (Ag3PO4) for photo-electrochemical water oxidation on (100), (110) and (111) surfaces has recently been reported by experimental studies (D. J. Martin et al., Energy Environ. Sci., 2013, 6, 3380-3386). The (111) surface showed the highest performance with an oxygen evolution rate of 10 times higher than the other surfaces. The high performance of the (111) surface was attributed to high hole mobility, high surface energy and, in a recent theoretical study (Z. Ma et al., RSC Adv., 2017, 7, 23994-24003), to a lower OH adsorption energy and the band structure. The investigations are based on a few structures and a full atomistic picture of the Ag3PO4 under electrochemical reactions is still missing. Therefore, we report here a systematic study of the oxygen evolution reaction (OER) of Ag3PO4 (100), (110), and (111) surfaces by density functional theory (DFT) calculations. Through a detailed investigation of the reaction energies and the overpotentials of OER on all possible surface orientations with all possible terminations and different involvement of Ag adsorption sites, we can confirm that (111) surfaces are highly active. However, surface orientation was not found to exclusively determine the electrochemical activity; neither did the number of Ag atoms involved in the adsorption of the intermediate species nor the type of surface termination or the different potential determining reaction steps. By using Bader charge analysis and investigation of the charge redistribution during OER, we found that the highest activity, i.e. lowest overpotential, is related to the charge redistribution of two OER steps, namely the Oad and the HOOad formation. If the charge redistribution between these steps is small, then the overpotential is small and, hence, the activity is high. Charge redistributions are usually small for the (111) surface and therefore the (111) surface is usually the most active one. The concept of charge redistribution being decisive for the high activity of Ag3PO4 may open a new design strategy for materials with highly efficient electrochemical surfaces.

12.
J Phys Chem Lett ; 15(31): 8057-8064, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39083667

RESUMO

With the use of chiral organic cations in two-dimensional metal halide perovskites, chirality can be induced in the metal halide layers, which results in semiconductors with intriguing chiral optical and spin-selective transport properties. The chiral properties strongly depend upon the temperature, despite the basic crystal symmetry not changing fundamentally. We identify a set of descriptors that characterize the chirality of metal halide perovskites, such as MBA2PbI4, and study their temperature dependence using molecular dynamics simulations with on-the-fly machine-learning force fields obtained from density functional theory calculations. We find that, whereas the arrangement of organic cations remains chiral upon increasing the temperature, the inorganic framework loses this property more rapidly. We ascribe this to the breaking of hydrogen bonds that link the organic with the inorganic substructures, which leads to a loss of chirality transfer.

13.
ACS Energy Lett ; 9(5): 2343-2350, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751970

RESUMO

Two-dimensional (2D) organic-inorganic hybrid iodide perovskites have been put forward in recent years as stable alternatives to their three-dimensional (3D) counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEA2PbI4, BA2PbI4, and PEA2SnI4 (PEA, phenethylammonium; BA, butylammonium) are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more destructive in 2D than in 3D networks, making defect formation energetically more costly. The stability of 2D Sn iodide perovskites can be further enhanced by alloying with Pb. Should, however, point defects emerge in sizable concentrations as a result of nonequilibrium growth conditions, for instance, then those defects likely hamper the optoelectronic performance of the 2D perovskites, as they introduce deep traps. We suggest that trap levels are responsible for the broad sub-bandgap emission in 2D perovskites observed in experiments.

14.
Chem Commun (Camb) ; 60(20): 2816, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391028

RESUMO

Correction for 'How fast do defects migrate in halide perovskites: insights from on-the-fly machine-learned force fields' by Mike Pols et al., Chem. Commun., 2023, 59, 4660-4663, https://doi.org/10.1039/D3CC00953J.

15.
ACS Appl Mater Interfaces ; 16(12): 14984-14994, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483310

RESUMO

To achieve more stable and efficient metal halide perovskite devices, optimization of charge transport materials and their interfaces with perovskites is crucial. ZnO on paper would make an ideal electron transport layer in perovskite devices. This metal oxide has a large bandgap, making it transparent to visible light; it can be easily n-type doped, has a decent electron mobility, and is thought to be chemically relatively inert. However, in combination with perovskites, ZnO has turned out to be a source of instability, rapidly degrading the performance of devices. In this work, we provide a comprehensive experimental and computational study of the interaction between the most common organic perovskite precursors and the surface of ZnO, with the aim of understanding the observed instability. Using X-ray photoelectron spectroscopy, we find a complete degradation of the precursors in contact with ZnO and the formation of volatile species as well as new surface bonds. Our computational work reveals that different pristine and defected surface terminations of ZnO facilitate the decomposition of the perovskite precursor molecules, mainly through deprotonation, making the deposition of the latter on those surfaces impossible without the use of passivation.

16.
J Phys Chem C Nanomater Interfaces ; 128(9): 4111-4118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38476824

RESUMO

All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb(BrxI1-x)3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb(BrxI1-x)3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb(BrxI1-x)3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites.

17.
Adv Mater ; 36(5): e2308032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994680

RESUMO

Under continuous light illumination, it is known that localized domains with segregated halide compositions form in semiconducting mixed-halide perovskites, thus severely limiting their optoelectronic applications due to the negative changes in bandgap energies and charge-carrier characteristics. Here mixed-halide perovskite CsPbBr1.2 I1.8 nanocrystals are deposited onto an indium tin oxide substrate, whose temperature can be rapidly changed by ≈10 °C in a few seconds by applying or removing an external voltage. Such a sudden temperature change induces a temporary transition of CsPbBr1.2 I1.8 nanocrystals from the segregated phase to the mixed phase, the latter of which can be permanently maintained when the light illumination is coupled with periodic heating cycles. These findings mark the emergence of a practical solution to the detrimental phase-segregation problem, given that a small temperature modulation is readily available in various fundamental studies and practical devices of mixed-halide perovskites.

18.
J Phys Chem Lett ; 14(51): 11565-11572, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096543

RESUMO

Chiral metal halide perovskites have emerged as promising optoelectronic materials for the emission and detection of circularly polarized visible light. Despite chirality being realized by adding chiral organic cations or ligands, the chiroptical activity originates from the metal halide framework. The mechanism is not well understood, as an overarching modeling framework is lacking. Capturing chirality requires going beyond electric dipole transitions, which is the common approximation in condensed matter calculations. We present a density functional theory (DFT) parametrized tight-binding (TB) model, which allows us to calculate optical properties including circular dichroism (CD) at low computational cost. Comparing Pb-based chiral perovskites with different organic cations and halide anions, we find that the structural helicity within the metal halide layers determines the size of the CD. Our results mark an important step in understanding the complex correlations of structural, electronic, and optical properties of chiral perovskites and provide a useful tool to predict new compounds with desired properties for novel optoelectronic applications.

19.
Chem Commun (Camb) ; 59(31): 4660-4663, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36994486

RESUMO

The migration of defects plays an important role in the stability of halide perovskites. It is challenging to study defect migration with experiments or conventional computer simulations. The former lacks an atomic-scale resolution and the latter suffers from short simulation times or a lack of accuracy. Here, we demonstrate that machine-learned force fields, trained with an on-the-fly active learning scheme against accurate density functional theory calculations, allow us to probe the differences in the dynamical behaviour of halide interstitials and halide vacancies in two closely related compositions CsPbI3 and CsPbBr3. We find that interstitials migrate faster than vacancies, due to the shorter migration paths of interstitials. Both types of defects migrate faster in CsPbI3 than in CsPbBr3. We attribute this to the less compact packing of the ions in CsPbI3, which results in a larger motion of the ions and thus more frequent defect migration jumps.

20.
J Phys Chem C Nanomater Interfaces ; 127(2): 1189-1197, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36704664

RESUMO

Lattice defects affect the long-term stability of halide perovskite solar cells. Whereas simple point defects, i.e., atomic interstitials and vacancies, have been studied in great detail, here we focus on compound defects that are more likely to form under crystal growth conditions, such as compound vacancies or interstitials, and antisites. We identify the most prominent defects in the archetype inorganic perovskite CsPbI3, through first-principles density functional theory (DFT) calculations. We find that under equilibrium conditions at room temperature, the antisite of Pb substituting Cs forms in a concentration comparable to those of the most prominent point defects, whereas the other compound defects are negligible. However, under nonequilibrium thermal and operating conditions, other complexes also become as important as the point defects. Those are the Cs substituting Pb antisite, and, to a lesser extent, the compound vacancies of PbI2 or CsPbI3 units, and the I substituting Cs antisite. These compound defects only lead to shallow or inactive charge carrier traps, which testifies to the electronic stability of the halide perovskites. Under operating conditions with a quasi-Fermi level very close to the valence band, deeper traps can develop.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa