Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Surg Res ; 272: 51-60, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936912

RESUMO

BACKGROUND: The aim of this study was to investigate bacterial translocation and its possible role in the development of post-resuscitation inflammatory response following Cardio-Pulmonary Resuscitation (CPR) after cardiac arrest. METHODS: Munich female swine were employed for a model of cardiac arrest via application of electrical current. After 7 min, CPR was initiated, and animals were either successfully return to spontaneous circulation (ROSC) within 40 min or not (no-ROSC). At the end of experimental period and prior to sacrifice, samples from the intestine, mesenteric lymph nodes (MLN), liver and portal vein blood were obtained. Evaluation of inflammation and gut permeability was performed; MLN, liver and portal vein samples were analyzed for 16 s rRNA detection and cytokine mRNA expression. RESULTS: A decreased expression of the tight junction protein Occludin, with higher levels of inflammation, greater epithelial disintegration, ulceration, loss of crypts and villi height were found in the intestines of the ROSC swine in comparison to no-ROSC. The macrophage surface antigen CD-14 staining was relatively more intense in the ROSC than in no-ROSC. Higher levels of TNF-α mRNA expression were present in the liver of the ROSC group. Finally, despite the inflammatory response and the gut mucosal alterations in ROSC group, no bacterial translocation was detected in liver, MLN and portal vein. CONCLUSIONS: We show that resuscitation from cardiac arrest induces inflammatory response and intestinal permeability in swine 4h after resuscitation, but not a bacterial translocation. Bacterial translocation is not an early phase phenomenon but probably part of the pathophysiologic sequelae.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Síndrome Pós-Parada Cardíaca , Animais , Translocação Bacteriana , Feminino , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Inflamação , RNA Mensageiro , Suínos
2.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562961

RESUMO

Idiopathic pulmonary fibrosis (IPF) is caused by progressive lung tissue impairment due to extended chronic fibrosis, and it has no known effective treatment. The use of conditioned media (CM) from an immortalized human adipose mesenchymal stem cell line could be a promising therapeutic strategy, as it can reduce both fibrotic and inflammatory responses. We aimed to investigate the anti-inflammatory and anti-fibrotic effect of CM on human pulmonary subepithelial myofibroblasts (hPSM) and on A549 pulmonary epithelial cells, treated with pro-inflammatory or pro-fibrotic mediators. CM inhibited the proinflammatory cytokine-induced mRNA and protein production of various chemokines in both hPSMs and A549 cells. It also downregulated the mRNA expression of IL-1α, but upregulated IL-1ß and IL-6 mRNA production in both cell types. CM downregulated the pro-fibrotic-induced mRNA expression of collagen Type III and the migration rate of hPSMs, but upregulated fibronectin mRNA production and the total protein collagen secretion. CM's direct effect on the chemotaxis and cell recruitment of immune-associated cells, and its indirect effect on fibrosis through the significant decrease in the migration capacity of hPSMs, makes it a plausible candidate for further development towards a therapeutic treatment for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Anti-Inflamatórios/farmacologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/metabolismo , RNA Mensageiro/metabolismo
3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675452

RESUMO

Metabolites produced by dysbiotic intestinal microbiota can influence disease pathophysiology by participating in ligand-receptor interactions. Our aim was to investigate the differential expression of metabolite receptor (MR) genes between inflammatory bowel disease (IBD), healthy individuals (HIs), and disease controls in order to identify possible interactions with inflammatory and fibrotic pathways in the intestine. RNA-sequencing datasets containing 643 Crohn's disease (CD) patients, 467 ulcerative colitis (UC) patients and 295 HIs, and 4 Campylobacter jejuni-infected individuals were retrieved from the Sequence Read Archive, and differential expression was performed using the RaNA-seq online platform. The identified differentially expressed MR genes were used for correlation analysis with up- and downregulated genes in IBD, as well as functional enrichment analysis using a R based pipeline. Overall, 15 MR genes exhibited dysregulated expression in IBD. In inflamed CD, the hydroxycarboxylic acid receptors 2 and 3 (HCAR2, HCAR3) were upregulated and were associated with the recruitment of innate immune cells, while, in the non-inflamed CD ileum, the cannabinoid receptor 1 (CNR1) and the sphingosine-1-phospate receptor 4 (S1PR4) were downregulated and were involved in the regulation of B-cell activation. In inflamed UC, the upregulated receptors HCAR2 and HCAR3 were more closely associated with the process of TH-17 cell differentiation, while the pregnane X receptor (NR1I2) and the transient receptor potential vanilloid 1 (TRPV1) were downregulated and were involved in epithelial barrier maintenance. Our results elucidate the landscape of metabolite receptor expression in IBD, highlighting associations with disease-related functions that could guide the development of new targeted therapies.

4.
Inflamm Bowel Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717842

RESUMO

BACKGROUND: Oncostatin-M (OSM) is associated with antitumor necrosis factor (anti-TNF)-α resistance in inflammatory bowel disease (IBD) and fibrosis in inflammatory diseases. We studied the expression of OSM and its receptors (OSMR, gp130) on intestinal subepithelial myofibroblasts (SEMFs) and the effect of OSM stimulation on SEMFs. METHODS: The mRNA and protein expression of OSM, OSMR, gp130, and several fibrotic and chemotactic factors were studied in mucosal biopsies and isolated human intestinal SEMFs of patients with IBD and healthy controls (HCs) and in a model of human intestinal organoids (HIOs). Subepithelial myofibroblasts and HIOs were stimulated with OSM and interleukin (IL)-1α/TNF-α. RNAseq data of mucosal biopsies were also analyzed. RESULTS: Oncostatin-M receptors and gp130 were overexpressed in mucosal biopsies of patients with IBD (P < .05), especially in inflamed segments (P < .05). The expression of OSM, OSMR, and gp130 in SEMFs from HCs was increased after stimulation with IL-1α/TNF-α (P < .001; P < .01; P < .01). The expression of CCL2, CXCL9, CXCL10, and CXCL11 was increased in SEMFs from patients with IBD and HCs after stimulation with OSM in a dose-dependent manner (P < .001; P < .05; P < .001; P < .001) and was further increased after prestimulation with IL-1α/TNF-α (P < .01 vs OSM-alone). Similar results were yielded after stimulation of HIOs (P < .01). Oncostatin-M did not induce the expression of collagen I, III, and fibronectin. Oncostatin-M receptor expression was positively correlated with CCL2, CXCL9, CXCL10, and CXCL11 expression in mucosal biopsies (P < .001; P < .001; P = .045; P = .033). CONCLUSIONS: Human SEMFs overexpress OSMR in an inflammatory microenvironment. Oncostatin-M may promote inflammation in IBD via its stimulatory effects on SEMFs, which primarily involve chemoattraction of immune cells to the intestinal mucosa.


Oncostatin-M/OSMR show elevated expression on intestinal fibroblasts that is regulated by IBD-relevant pro-inflammatory stimuli. In turn, OSM induces a pro-inflammatory phenotype on primary intestinal fibroblasts, with prominent overexpression of chemotactic factors, without demonstrating a substantial profibrotic effect.

5.
Biomedicines ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509671

RESUMO

Niclosamide is a commonly used helminthicidic drug for the treatment of human parasitosis by helminths. Recently, efforts have been focusing on repurposing this drug for the treatment of other diseases, such as idiopathic pulmonary fibrosis. Subepithelial lung myofibroblasts (SELMs) isolated from tissue biopsies of patients undergoing surgery for lung cancer were stimulated with TNF-α (50 ng/mL), IL-1α (5 ng/mL), added alone or in combination, and TGF-ß1 (5 ng/mL). After treatment with niclosamide at 30 nM and 100 nM concentrations, expression of collagen type I, collagen type III, and fibronectin was studied by total RNA isolation and qRT-PCR and protein collagen secretion with the use of Sircol collagen assay. The migration of SELMs was assessed by a wound-healing assay. Niclosamide had no effect on baseline SELM fibrotic factor expression. When stimulated with TGF-ß1, IL-1α, and/or TNF-α, SELM expression of collagen type I, type III, and fibronectin were upregulated, as was the secretion of total collagen in the culture medium. Treatment with niclosamide attenuated the effects of cytokine stimulation leading to a notable decrease in the mRNA expression of collagen type I, type III, and fibronectin in a concentration-dependent manner. SELM collagen secretion was also reduced by niclosamide at 100 nM concentration when examined at the protein level. Migration of both TGF-ß1 stimulated and unstimulated SELMs was also inhibited by niclosamide. In this study, we highlight the anti-fibrotic properties of niclosamide on SELMs under stimulation with pro-fibrotic and pro-inflammatory cytokines, thus proposing this compound as a possible new therapeutic agent against lung fibrosis.

6.
Biomedicines ; 11(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36979766

RESUMO

Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.

7.
Nutrients ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111041

RESUMO

The probiotics Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 seem to promote wound healing when applied topically. Our aim was to investigate their effect on the mRNA expression of pro-inflammatory, healing and angiogenetic factors during the healing process of a standardized excisional wound model in rats. Rats subjected to six dorsal skin wounds were allocated to Control; L. plantarum; combined formula of L. rhamnosus plus B. longum; L. rhamnosus; and B. longum treatments, applied every two days, along with tissue collection. The pro-inflammatory, wound-healing, and angiogenetic factors of mRNA expression were assessed by qRT-PCR. We found that L. plantarum exerts a strong anti-inflammatory effect in relation to L. rhamnosus-B. longum, given alone or in combination; the combined regime of L. rhamnosus-B. longum, works better, greatly promoting the expression of healing and angiogenic factors than L. plantarum. When separately tested, L. rhamnosus was found to work better than B. longum in promoting the expression of healing factors, while B. longum seems stronger than L. rhamnosus in the expression of angiogenic factors. We, therefore, suggest that an ideal probiotic treatment should definitively contain more than one probiotic strain to speed up all three healing phases.


Assuntos
Bifidobacterium longum , Lacticaseibacillus rhamnosus , Probióticos , Ratos , Animais , Cicatrização , RNA Mensageiro
8.
J Gastrointestin Liver Dis ; 31(2): 229-243, 2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35694983

RESUMO

Crohn's disease and ulcerative colitis, the two most common inflammatory bowel diseases (IBD), are characterized by chronic relapsing inflammation. Although recent progress regarding the therapeutic approach to these diseases has been made in the development of biologic therapies, not every patient responds well, resulting in a high percentage of ineffectiveness. Even though the immunological cascades range between the current pharmacological agents for IBD treatment and the constant research for more possible pharmacological targets, a lot of progress still needs to be made regarding the correct therapeutical choice for each individual patient. Therefore, it is still important to find proper, inexpensive, and measurable biomarkers, in order to be able to assess the efficacy of these therapies, to make personalized choices, as well as to avoid potential adverse drug reactions and side effects. The biomarkers that are available in the present vary; metabolic, microbial, cytokine-related, genetic, disease-specific and drug-specific. This review presents the existing biological agents for IBD and focuses both on the cascades affected by each biologic agent and on the different markers that have been found to be indicative of their effectiveness.


Assuntos
Produtos Biológicos , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Produtos Biológicos/efeitos adversos , Biomarcadores , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Citocinas , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico
9.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289619

RESUMO

Inflammatory Bowel Diseases (IBDs) are characterized by chronic relapsing inflammation of the gastrointestinal tract. The mesenchymal stem/stromal cell-derived secretome and secreted extracellular vesicles may offer novel therapeutic opportunities in patients with IBD. Thus, exosomes may be utilized as a novel cell-free approach for IBD therapy. The aim of our study was to examine the possible anti-inflammatory effects of secretome/exosomes on an IBD-relevant, in vitro model of LPS-induced inflammation in human intestinal SubEpithelial MyoFibroblasts (SEMFs). The tested CM (Conditioned Media)/exosomes derived from a specific population of second-trimester amniotic fluid mesenchymal stem/stromal cells, the spindle-shaped amniotic fluid MSCs (SS-AF-MSCs), and specifically, their secreted exosomes could be utilized as a novel cell-free approach for IBD therapy. Therefore, we studied the effect of SS-AF-MSCs CM and exosomes on LPS-induced inflammation in SEMF cells. SS-AF-MSCs CM and exosomes were collected, concentrated, and then delivered into the cell cultures. Administration of both secretome and exosomes derived from SS-AF-MSCs reduced the severity of LPS-induced inflammation. Specifically, IL-1ß, IL-6, TNF-α, and TLR-4 mRNA expression was decreased, while the anti-inflammatory IL-10 was elevated. Our results were also verified at the protein level, as secretion of IL-1ß was significantly reduced. Overall, our results highlight a cell-free and anti-inflammatory therapeutic agent for potential use in IBD therapy.

10.
Front Immunol ; 13: 1058237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36632136

RESUMO

Introduction: Extracellular matrix turnover, a ubiquitous dynamic biological process, can be diverted to fibrosis. The latter can affect the intestine as a serious complication of Inflammatory Bowel Diseases (IBD) and is resistant to current pharmacological interventions. It embosses the need for out-of-the-box approaches to identify and target molecular mechanisms of fibrosis. Methods and results: In this study, a novel mRNA sequencing dataset of 22 pairs of intestinal biopsies from the terminal ileum (TI) and the sigmoid of 7 patients with Crohn's disease, 6 with ulcerative colitis and 9 control individuals (CI) served as a validation cohort of a core fibrotic transcriptomic signature (FIBSig), This signature, which was identified in publicly available data (839 samples from patients and healthy individuals) of 5 fibrotic disorders affecting different organs (GI tract, lung, skin, liver, kidney), encompasses 241 genes and the functional pathways which derive from their interactome. These genes were used in further bioinformatics co-expression analyses to elucidate the site-specific molecular background of intestinal fibrosis highlighting their involvement, particularly in the terminal ileum. We also confirmed different transcriptomic profiles of the sigmoid and terminal ileum in our validation cohort. Combining the results of these analyses we highlight 21 core hub genes within a larger single co-expression module, highly enriched in the terminal ileum of CD patients. Further pathway analysis revealed known and novel inflammation-regulated, fibrogenic pathways operating in the TI, such as IL-13 signaling and pyroptosis, respectively. Discussion: These findings provide a rationale for the increased incidence of fibrosis at the terminal ileum of CD patients and highlight operating pathways in intestinal fibrosis for future evaluation with mechanistic and translational studies.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Doença de Crohn/metabolismo , Colite Ulcerativa/patologia , Colo Sigmoide/patologia , Fibrose
11.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297405

RESUMO

Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs' inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.

12.
Life Sci ; 287: 120123, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748761

RESUMO

Idiopathic pulmonary fibrosis is a chronic, progressive parenchymal lung disease that results in fibrogenesis and the conditioned medium from adipose-derived mesenchymal stem cells (CM-ADSCs) has been shown to be efficacious in pulmonary fibrosis animal models. The aim of the present study is to evaluate the effect of CM-ADSCs on lung inflammation and fibrosis in a Bleomycin (BLM)-induced pulmonary fibrosis model. CM-ADSCs safety and toxicity were evaluated in Sprague Dawley rats and no adverse effects were observed. Six-week-old female C57BL/6J mice were employed in the BLM-induced pulmonary fibrosis model and were divided into four groups: Group 1 (Sham): animals were kept without BLM and treatment, Group 2 (Control): BLM with vehicle DMEM, Group 3: 10 µg/kg CM-ADSCs and Group 4: 100 µg/kg CM-ADSCs. Body weight, fibrosis and inflammation histological analyses, mRNA and protein pro-inflammatory cytokine, and total hydroxyproline content calculation were performed in all groups upon sacrifice. The 100 µg/kg CM-ADSCs showed a significant increase in mean body weight compared to Controls. CM-ADSCs doses resulted in the amelioration of fibrosis, as seen by Masson's Trichrome-staining, Ashcroft scoring, and Sirius red-staining. Compared to Controls, inflammation was also significantly reduced in CM-ADSCs-treated mice, with reduced F4/80 macrophage antigen staining, TNF-α mRNA and IL-6 and IL-10 protein levels. Total hydroxyproline content was found significantly reduced in both groups of CM-ADSCs-treated mice. Overall, our study shows that the CM-ADSCs is safe and efficient against pulmonary fibrosis, as it significantly reduced inflammation and fibrosis, with the larger dose of 100 µg/kg CM-ADSCs being the most efficient one.


Assuntos
Meios de Cultivo Condicionados , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/terapia , Mediadores da Inflamação/antagonistas & inibidores , Células-Tronco Mesenquimais , Pneumonia/terapia , Adulto , Animais , Linhagem Celular Transformada , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Mediadores da Inflamação/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley
13.
Stem Cells Int ; 2021: 9929461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354753

RESUMO

Inflammatory Bowel Diseases (IBDs) are characterized by chronic intestinal inflammation and fibrosis, the latter being the predominant denominator for long-term complications. Epithelial and mesenchymal 2D cultures are highly utilized in vitro models for the preclinical evaluation of anti-inflammatory and antifibrotic therapies. More recently, human intestinal organoids (HIOs), a new 3D in vitro model derived from pluripotent stem cells, have the advantage to closely resemble the architecture of the intestinal mucosa. However, the appropriate timing for the study of inflammatory and fibrotic responses, during HIO development, has not been adequately investigated. We developed HIOs from the human embryonic stem cell line, H1, and examined the expression of mesenchymal markers during their maturation process. We also investigated the effect of inflammatory stimuli on the expression of fibrotic and immunological mediators. Serial evaluation of the expression of mesenchymal and extracellular matrix (ECM) markers revealed that HIOs have an adequately developed mesenchymal component, which gradually declines through culture passages. Specifically, CD90, collagen type I, collagen type III, and fibronectin were highly expressed in early passages but gradually diminished in late passages. The proinflammatory cytokines IL-1α and TNF-α induced the mRNA expression of fibronectin, collagen types I and III, tissue factor (TF), and alpha-smooth muscle actin (α-SMA) primarily in early passages. Similarly, HIOs elicited strong mRNA and protein mesenchymal (CXCL10) and epithelial (CXCL1, CCL2, CXCL8, and CCL20) chemokine responses in early but not late passages. In contrast, the epithelial tight junction components, CLDN1 and JAMA, responded to inflammatory stimulation independently of the culture passage. Our findings indicate that this HIO model contains a functional mesenchymal component, during early passages, and underline the significance of the mesenchymal cells' fitness in inflammatory and fibrotic responses. Therefore, we propose that this model is suitable for the study of epithelial-mesenchymal interactions in early passages when the mesenchymal component is active.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa