Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 147(4): 1442-1452, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32791164

RESUMO

BACKGROUND: The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE: Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS: Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS: A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION: A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação a DNA/imunologia , Lectinas/imunologia , Proteínas Supressoras de Tumor/imunologia , Brônquios/imunologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação a DNA/química , Eosinófilos/imunologia , Humanos , Ligantes , Mastócitos/imunologia , Líquido da Lavagem Nasal/imunologia , Proteoglicanas/imunologia , Traqueia/imunologia , Proteínas Supressoras de Tumor/química
2.
J Am Chem Soc ; 143(30): 11435-11448, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34308638

RESUMO

Decades of research on protein folding have primarily focused on a subset of small proteins that can reversibly refold from a denatured state. However, these studies have generally not been representative of the complexity of natural proteomes, which consist of many proteins with complex architectures and domain organizations. Here, we introduce an experimental approach to probe protein refolding kinetics for whole proteomes using mass spectrometry-based proteomics. Our study covers the majority of the soluble E. coli proteome expressed during log-phase growth, and among this group, we find that one-third of the E. coli proteome is not intrinsically refoldable on physiological time scales, a cohort that is enriched with certain fold-types, domain organizations, and other biophysical features. We also identify several properties and fold-types that are correlated with slow refolding on the minute time scale. Hence, these results illuminate when exogenous factors and processes, such as chaperones or cotranslational folding, might be required for efficient protein folding.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteoma/química , Espectrometria de Massas , Modelos Moleculares , Dobramento de Proteína , Proteômica
3.
bioRxiv ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39386726

RESUMO

Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. There are a few well-known proteins that can misfold and aggregate in an age-dependent manner, such as amyloid ß and α-synuclein. However, many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many more proteins that incur structural alterations with age. Here, we used limited-proteolysis mass spectrometry (LiP-MS), a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified several hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning they typically cannot spontaneously refold to their native conformations after being chemically denatured. The potentially cofounding variable of post-translational modifications is systematically addressed, and we find that oxidation and phosphorylation cannot significantly explain the limited proteolysis signal. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline, and more broadly, that proteins need not form amyloids for their misfolded states to be relevant to age-related deterioration in cognitive abilities. TEASER: Up to 10% of rat hippocampal proteins can undergo structural changes that associate with age-related decline in spatial learning.

4.
Int J Nanomedicine ; 17: 4469-4479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176585

RESUMO

Purpose: Transient transfection is an essential tool for recombinant protein production, as it allows rapid screening for expression without stable integration of genetic material into a target cell genome. Poly(ethylenimine) (PEI) is the current gold standard for transient gene transfer, but transfection efficiency and the resulting protein yield are limited by the polymer's toxicity. This study investigated the use of a class of cationic polymers, poly(beta-amino ester)s (PBAEs), as reagents for transient transfection in comparison to linear 25 kDa PEI, a commonly used transfection reagent. Methods: Transfection efficiency and protein production were assessed in human embryonic kidney 293F (HEK) and Chinese hamster ovary-S (CHO) cell suspensions using PBAE-based nanoparticles in comparison to linear 25 kDa PEI. Production of both a cytosolic reporter and secreted antibodies was investigated. Results: In both HEK and CHO cells, several PBAEs demonstrated superior transfection efficiency and enhanced production of a cytosolic reporter compared to linear 25 kDa PEI. This result extended to secreted proteins, as a model PBAE increased the production of 3 different secreted antibodies compared to linear 25 kDa PEI at culture scales ranging from 20 to 2000 mL. In particular, non-viral gene transfer using the lead PBAE/plasmid DNA nanoparticle formulation led to robust transfection of mammalian cells across different constructs, doses, volumes, and cell types. Conclusion: These results show that PBAEs enhance transfection efficiency and increase protein yield compared to a widespread commercially available reagent, making them attractive candidates as reagents for use in recombinant protein production.


Assuntos
Ésteres , Polietilenoimina , Animais , Células CHO , Cricetinae , Cricetulus , DNA/metabolismo , Humanos , Indicadores e Reagentes , Polímeros , Proteínas Recombinantes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa